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Abstract

The data-generating process of productivity growth includes both trend and business-cycle

shocks, generating many counterfactuals for prices under full-information. In practice, agents can-

not immediately distinguish between the two shocks, leading to “rational confusion”: each shock

inherits properties of its counterpart. This confusion magnifies the perceived share of permanent

shocks and implies that, in contrast to canonical frameworks, transitory shocks are the main driver

of long-run risk through trendy business-cycles. With learning, the equity premium turns positive,

and both investment and valuation ratios become procyclical, in-line with the data. Consequently,

rational confusion is key for bridging disciplined macro-dynamics with equilibrium asset-prices.
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1 Introduction

Observed changes in economic growth and financial valuations can be driven by either business-

cycle or stochastic-trend shocks. While both are empirically relevant, the common conception, partic-

ularly in structural asset-pricing, is that trend shocks are quantitatively more important given their

permanence, whereas business-cycle shocks induce only a transitory effect. Many studies highlight

the impact of persistent trend shocks on macro dynamics (e.g., Aguiar and Gopinath 2007; Jaimovich

and Rebelo 2009a) while others argue that permanent shocks are the main contributors to investors’

marginal utility and risk premia (e.g., Alvarez and Jermann 2005). Accordingly, seminal asset-pricing

models in endowment economies (e.g., Campbell and Cochrane 1999; Bansal and Yaron 2004; Barro

2006) and production economies (e.g., Berk, Green, and Naik 1999; Tallarini 2000) assume that shocks

affect the stochastic trend of either consumption (or productivity).

As a consequence, in the aforementioned models, all fluctuations in consumption’s level are per-

manent in equilibrium. This stands at odds with ample empirical evidence suggesting that most of the

variation in output and consumption is purely transitory (see, e.g., King, Plosser, Stock, and Watson

1991; Cochrane 1988; Gali 1999). If business-cycle shocks are incorporated, to be consistent with the

estimated data-generating process, would equilibrium asset prices be empirically-consistent? Would

permanent shocks remain the primary contributor to risk?

The answer to these questions depends upon the information environment and, in particular, the

beliefs of households and firms. In practice, individuals are unable to perfectly distinguish between

each type of shock in real-time and must instead learn about their true nature over time. Given an

empirically-disciplined mixture of transitory and permanent shocks, we show that introducing this

learning process into a general-equilibrium setting not only generates realistic asset prices, but also

reveals that transitory, not permanent, shocks can be more important economically.

Specifically, we study a realistic production model that features (1) both trend and business-

cycle productivity shocks, (2) imperfect-information about the underlying source of variation in total

productivity, (3) Kalman filtering of the underlying shocks, and (4) recursive preferences. We estimate

the model using SMM, and find that in-line with extant evidence from the macro literature (e.g.,
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Blanchard, L’Huillier, and Lorenzoni 2013), most productivity fluctuations originate from business-

cycle shocks, in contrast to the assumed technological process in most production-based asset-pricing

studies.

The estimated data-generating process imposes a significant hurdle for explaining asset prices:

under full-information, the estimated model produces several striking counterfactuals. Most strikingly,

the equity premium is negative (or positive but very small) while the risk-free rate and valuation ratios

are countercyclical.1 Under imperfect-information, the model is able to overcome these inconsistencies

through “rational confusion”: each shock (partially) inherits the properties of its counterpart.2 As

a result, business-cycle shocks contribute positively to expected consumption and risk-prices (like

permanent shocks under full information), while trend shocks have a positive impact on investment

and risk-exposures (like transitory shocks under full information).

In particular, we show that rational confusion generates “trendy business-cycle shocks”: realized

business-cycle fluctuations that the agent mistakenly (yet rationally) attributes to shifts in the trend.

First, for all parameter values, we show that the fraction of uncertainty that is perceived to arise from

permanent shocks is larger than under full information, and this effect is uniquely amplified by the

presence of transitory shocks. That is, trendy business cycle shocks magnify the endogenous quantity

of long-run consumption risk. Second, we find that under our estimated parameters, trendy business-

cycle shocks are the main source of fluctuation in expected consumption. In fact, trend shocks never

have to actually materialize: as long as the agent believes that permanent shocks might happen, pure

business-cycle realizations can endogenously create sizable procyclicality in expected consumption

growth. Accordingly, our study is the first, to our knowledge, to quantitatively demonstrate that even

when the economy features permanent shocks, the source of long-run risk can emanate almost entirely

from business-cycle shocks. This stands in contrast with the implications of canonical frameworks,

and may help reconcile the challenge faced by empiricists in supporting the long-risk framework using

only consumption data.

Likewise, under imperfect-information, a fraction of the fluctuations in the trend is rationally

1This failure under full-information is not unique to our specific production setup. Extant asset pricing frameworks
can fail to deliver a meaningful premium if sizable business-cycle shocks are introduced, a point we discuss in both Section
2 and Appendix A.

2We thank an anonymous referee for suggesting the terminology, “rational confusion”, to describe this phenomenon.
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attributed to the business-cycle. This additional source of “confusion” bears important implications

for the dynamics of investment. While Beaudry and Portier (2004) and Barsky and Sims (2011) show

that trend news shocks increase investment in the data, the opposite happens in our model under full-

information (see, e.g., Barro and King 1984). Under imperfect-information though, investment turns

strictly procyclical, precisely because a sizable fraction of the trend shock is thought to be transitory.

Because investment directly affects firms’ risk exposures under production, learning turns the market’s

exposure to trend shocks positive.

The combined effect of these forces highlights a novel implication of learning in our setting. While

existing studies with learning typically emphasize risk magnification, rational confusion can also gen-

erate reversals: it flips signs and cyclicality. In our estimated model, for example, the equity premium

turns from negative to positive, while the investment, the risk-free rate, and valuation ratios turn from

countercyclical to procyclical, consistent with the data.

Rational confusion also bears implications for term-structures and macroeconomic dynamics. First,

we show that the slope of the term-structure depends on individuals’ perception of the relative uncer-

tainty they face with respect to each shock. For example, we show that the dividend strip expected

returns curve becomes more upward-sloping under learning, qualitatively consistent with attributing

a larger fraction of the forecast error variance to permanent shocks, and quantitatively consistent with

recent unconditional slope estimates of Bansal, Miller, Song, and Yaron (2021). Second, we illustrate

how the interplay between beliefs about business-cycle and trend shocks provide a new perspective

on conditional macro moments. For example, after the financial crisis, many deemed the recovery

“too slow”. Our model-implied beliefs suggest that there was a persistent decline in beliefs about the

trend, an insight which we believe complements existing theories in the literature for the decline in

investment growth.3

Importantly, while the rational confusion mechanism also arises in an endowment setup, it bears

unique implications under production, in which both investment and consumption are endogenous.

First, imperfect-information implies that business-cycle shocks are more likely to increase expected

consumption growth under production than under endowment, due to the effect of learning on in-

3Specifically, we feed into the learning model the observed path of utilization-adjusted productivity growth, as mea-
sured by Basu, Fernald, and Kimball (2006) and Fernald (2012), and obtain model-implied paths for real growth rates.
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vestment. Second, in the absence of flexible investment, the equity premium under full-information

is always positive (albeit small). As described above, this need not be the case under production:

under full-information, the equity premium can be negative, and the challenge of reconciling the data

is distinct. In particular, in a production setting, the change in the risk premium’s sign under learning

is not only a reflection of a greater quantity of risk in the SDF – rational confusion also impacts risk

exposures via flexible investment. Third, the impact of learning on the slope of term structures can

change depending on the endogeneity of consumption.

Before providing more detailed intuition for our pricing results, we first clarify the nature of the

shocks. Consider a mean-reverting process, x:

xt = ρxt−1 + εx,t, (1)

where ρ ∈ [0, 1). The dynamics of productivity’s level, At, can relate in two ways to the process x.

Consider the specification that At features a stochastic trend, log(At/At−1) = xt, which is widespread

in asset-pricing. Whether ρ = 0 (i.e, “short-run” trend shocks) or ρ > 0 (i.e., “long-run” trend shocks),

the shocks to x have a permanent effect on the level of At, because the process At has a unit root.

Alternatively, it is possible to specify that log(At) = xt. In this case, which is prevalent in the RBC

literature, the shocks εx,t+1 have a mean-reverting and transitory effect on the level of productivity,

because ∂ log(At+k)/∂εt = ρk. Our model nests both cases, and their relative magnitude is dictated

by the data. Because our mechanism exploits the belief dynamics that arise from the interaction

of business-cycle and trend shocks, it consequently differs meaningfully from existing studies which

analyze the impact of learning on risk premia.4

Two factors create a challenge for the full-information model to match the equity premium. First,

a trend shock increases expected future consumption, creating a strong wealth effect. Thus, trend

shocks, which are akin to news shocks, cause investment to drop even though our setting features

the same IES and relative-risk aversion values used in Bansal and Yaron (2004). This implies that

the representative firm has a negative exposure to long-run trend productivity risk, as investment

4This distinction between permanent and transitory shocks also applies to an economy with exogenous consumption.
For instance, several extant papers study imperfect-information economies with i.i.d. shocks to consumption growth
(sometimes, labeled as “short-run” shocks). These shocks are not transitory: while their impact on consumption growth
lasts one period, they have a permanent impact on the level of consumption. In Appendix A, we solve an endowment
economy model which features trend and business-cycle shocks and show that some of our results can arise in this setting
as well.
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and stock prices comove. As a result, trend shocks (which are traditionally viewed as long-run risk)

can drop the equity premium under full-information. Second, while business-cycle shocks increase

contemporaneous consumption they also predict future consumption growth negatively due to mean-

reversion. These effects offset one another and so the impact on marginal utility is close to zero. As

a result, the contribution of business-cycle shocks to the equity premium is negligible and accounting

for the impact of the trend, the equity premium is negative under full-information.

Imperfect-information allows us to overcome these challenges. Under learning, a fraction of the

trend shock is perceived to be transitory, which weakens the perceived wealth effect, allowing the

substitution effect to dominate. As a result, the investment response to long-run trend shocks flips

its sign, turning the exposure of the firm to these shocks positive. However, while the price of trend

productivity risk remains positive, it is significantly attenuated since the firm only learns about its

permanent nature over time. Combined, these changes lead the equity premium to flip from negative

to slightly positive. Learning’s impact on the pricing of business-cycle shocks is more significant. While

investment’s response to business-cycle shock remains positive under learning and, therefore, so does

the firm’s exposure, the price of risk for these shocks is amplified considerably. When the agent filters

realized productivity shocks, a fraction of the realized transitory shock is perceived as permanent, i.e.,

a trendy business cycle shock is observed. This endogenously creates a small but highly persistent

increase in expected consumption growth in response to a business-cycle shock, creating a large drop

in the marginal utility.

The rest of the paper is organized as follows. We cover the related literature in Section 2. We

present the production model with imperfect-information in Section 3. We then show the implications

of learning: for beliefs about growth and uncertainty in Section 4, for macroeconomic dynamics in

Section 5, for asset prices in Section 6, and for fitting empirical paths in Section 7. We provide

concluding remarks in Section 8.

2 Related Literature

Our paper connects to three bodies of literature: production based asset pricing under full-

information, asset-pricing studies under imperfect-information, and RBC studies with news shocks.
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A growing body of research studies asset prices in the context of general equilibrium models

(i.e., production-based asset pricing). Within this literature, reconciling the model-implied equity

premium with the data is a well-known challenge.5 Existing papers demonstrate that the ability

of the model to match risk premia critically depends on the nature of the underlying productivity

shocks. Kaltenbrunner and Lochstoer (2010) show that under Epstein and Zin (1991) preferences

featuring early resolution of uncertainty, productivity shocks must have a permanent effect on the

level for the model to produce a realistic Sharpe ratio. If productivity shocks are transitory (i.e., if

the level reverts to its unconditional mean), then a positive transitory productivity shock is akin to

a negative long-run risk shock since expected consumption growth falls through mean-reversion. By

contrast, when productivity shocks are permanent, a positive shock to At endogenously leads to a

small, positive, and predictable component in consumption growth à la Bansal and Yaron (2004) via

consumption smoothing. Croce (2014) takes this conclusion a step further, showing not only that

permanent shocks are required, but that they should be persistent, i.e., ρ ought to be positive. With

a sufficiently high IES, such specification results in a large equity premium. Other studies that follow

consider a combination of “short run” permanent shocks (ρ = 0) along with “long run” permanent

shocks (ρ > 0).6. In these papers, permanent (short- or long- run) shocks serve as the source of

long-run consumption risk as in Bansal and Yaron (2004), while business-cycle risk plays no role.

Our study complements the analysis of Kaltenbrunner and Lochstoer (2010) and Croce (2014) by

considering a combination of business cycle and trend productivity shocks jointly. This mixture is

consistent with the true data generating process: in-line with the findings of Blanchard, L’Huillier,

and Lorenzoni (2013), we estimate the model and find that most productivity fluctuations originate

from business cycle shocks. Given these productivity estimates, our contribution vis-a-vis the former

papers is two-fold.

First, we show that even when business-cycle shocks dominate in the data, joint beliefs about the

5For instance, Jermann (1998) shows that a production model with habit preferences can produce a sizable equity
premium, albeit with a counterfactually volatile risk-free rate. In a framework closer to our own, Tallarini (2000) finds
that even households with recursive preferences and a very high degree of risk aversion generate a fairly low equity
premium.

6See, e.g., Ai, Croce, Diercks, and Li 2018; Segal and Shaliastovich 2021, who consider models with “long-term” and
“short-term” shocks; In these studies, the short run shocks are i.i.d. growth shocks, or one-time permanent shocks to
the level of productivity, resulting in non-stationary dynamics
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underlying states evolve in a way that generates empirically-consistent prices and macro dynamics.

Under full-information, business cycle shocks barely impact the marginal utility under full-information

(as in Kaltenbrunner and Lochstoer (2010)); with learning, the perceived possibility of trend shocks

helps business-cycle shocks to have a positive impact on expected consumption and risk-prices. Simi-

larly, under full-information, positive news shocks about the trend lead to lower investment and firm

valuation and so, despite having the same preferences as in Bansal and Yaron (2004), long-run produc-

tivity shocks à la Croce (2014) can actually decrease the equity premium in our model. With learning,

the perceived possibility of business-cycle shocks helps trend shocks to have a positive impact on

investment and risk-exposures and, as a result, increase the risk premium.

Second, both papers demonstrate how long-run risk can endogenously arise from consumption

smoothing, leading to persistence in expected consumption growth. Our aim is to uncover the true

nature of the underlying shocks that drive these expectations. Under full information, as in current

studies, long-run risk’s underlying shocks are materially permanent (with varying degree of persis-

tence). We show that, under learning, some fraction of mean-reverting shocks are perceived as perma-

nent and, moreover, have a greater quantitative impact than trend shocks themselves, a new outcome

in the literature. That is, under our estimates and imperfect-information, transitory business-cycle

shocks, not permanent trend shocks, are the primary contributor to the equity premium, and constitute

the main source of long-run consumption risk. In particular, it is the mere possibility of permanent

productivity shocks which creates “trendy business cycle shocks” (even if permanent shocks never

materialize).

Our paper also relates to a voluminous literature that studies asset prices under imperfect-information.

This includes economies with rational state uncertainty (e.g., Cogley and Sargent 2008; Lettau, Lud-

vigson, and Wachter 2008; Bansal and Shaliastovich 2010; Ai 2010; Boguth and Kuehn 2013), rational

parameter uncertainty (Hirshleifer, Li, and Yu 2015; Collin-Dufresne, Johannes, and Lochstoer 2016;

Johannes, Lochstoer, and Mou 2016; Andrei, Hasler, and Jeanneret 2019; Andrei, Carlin, and Hasler

2019; Babiak and Kozhan 2020), or subjective beliefs (Cagetti, Hansen, Sargent, and Williams 2002;

Jahan-Parvar and Liu 2014; Bidder and Dew-Becker 2016).

A common theme across the aforementioned papers is that they feature a single latent state
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(typically, about the dynamics of a permanent shock) or unknown parameter (typically, about the

evolution of a permanent shock). By contrast, our study features an empirically-representative mixture

of two latent state variables with opposing implications for agents’ beliefs. We emphasize that this

dual latency is not merely a technical feature: including both business cycle and trend shocks changes

the focus, mechanism and outcome of our paper, vis-à-vis the former studies.

First, our focus is distinct from the former papers which study asset-prices under imperfect-

information. We focus on the importance of business-cycle relative to trend shocks for expectations

and risk premia. We are able to shed new light on this point by studying the joint evolution of beliefs

about the latent trend and business-cycle states. This focus is particularly relevant, as it helps to

bridge the RBC literature with existing asset-pricing theories. Moreover, we demonstrate that con-

trary to the approach inherited from full-information models, business-cycle shocks should not be “left

out” of asset pricing models with learning: their role can exceed that of trend shocks.

Second, in existing studies, learning can enhance long-run risk by creating a martingale in beliefs,

for example, or by creating excess comovement between forecast errors and beliefs about the persistent

state. Our mechanism adds to existing theoretical insights in two ways. An implication of rational

confusion is that the fraction of next period’s uncertainty that is perceived to be associated with trend

(i.e., permanent) shocks is larger than under full-information. This effect arises because business-cycle

and trend shocks have the opposite effect on expectations – a feature which does not appear in models

which study these shocks in isolation. Moreover, rational confusion contributes to risk premia beyond

magnifying the volatility of the SDF: business-cycle shocks help trend news shocks have a positive

impact on investment and risk-exposure, as described above.

Third, the main outcome of existing papers with learning is that it leads to magnification. Rational

confusion can go beyond magnification and lead to reversal: learning flips signs and cyclicality. For

example, the equity premium in our baseline model turns from negative to positive while the risk-free

rate turns from countercyclical to procylical.

Lastly, our paper is connected to empirical and theoretical studies in macroeconomics that consider

the effect of imperfect-information on real variables (e.g., Moore and Schaller 2002; Edge, Laubach,

and Williams 2007; Boz, Daude, Durdu et al. 2008; Blanchard, L’Huillier, and Lorenzoni 2013, among
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others). For instance, the study of Blanchard, L’Huillier, and Lorenzoni (2013) features both persistent

transitory and permanent shocks and estimates the driving forces’ parameters using a structural VAR.

While our estimation targets separate moments, the parameters governing productivity are strikingly

similar: in particular, in both papers, business-cycle shocks are about ten-fold larger than trend shocks.

We differ from these papers by considering both the real and asset pricing implications of learning.

Moreover, in many RBC frameworks (e.g., Barro and King 1984, among many others), news about

the long run growth typically decrease hours worked and investment, for most IES values. The same

occurs in our full-information specification. While the literature has proposed several mechanisms to

overcome this counterfactual (e.g., flexible utilization as in Jaimovich and Rebelo 2009a), our study

suggests a separate channel: rational confusion.

3 Model

We consider an infinite horizon, discrete-time model. The economy is comprised of a representative

household who owns a representative firm. The household supplies labor to the firm inelastically. The

firm’s technology features both a stochastic trend and a business-cycle component. Each component is

driven by a persistent state. The household does not observe each state directly, but can learn about

these states from output dynamics via Kalman filtering. We provide details on each agent and the

learning process below.

3.1 Production

The representative firm produces its output, Yt, using a constant returns to scale Cobb-Douglas

production function, over capital, Kt, and a flow of labor, Lt:

Yt = Kα
t (AtLt)

1−α , (2)

where α is the capital share of output, and At is the firm’s productivity. The firm owns its capital

stock which depreciates at rate δ, and evolves according to the following law of motion:

Kt+1 = (1− δ)Kt + φ

(
It
Kt

)
Kt, (3)
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where It represents investment, and φ(·) is a positive, concave function capturing adjustment costs,

specified as in Jermann (1998):

φ

(
It
Kt

)
= α1 +

α2

1− 1
ζ

(
It
Kt

)1− 1
ζ

. (4)

The parameter ζ captures the elasticity of the investment rate. The limiting case ζ → ∞ (ζ → 0)

represent frictionless (infinitely costly) adjustment. The parameters α1 and α2 are set such that there

are no adjustment costs in the deterministic steady state.7

3.2 Technology

We consider a specification of productivity that combines two components: a real business-cycle

and a stochastic trend, similar to Aguiar and Gopinath (2007) and Blanchard, L’Huillier, and Lorenzoni

(2013). Specifically, let zt denote the business-cycle state, while xt denotes the trend (long-run growth)

state. The productivity process, At, follows:

At = Γte
zt , (5)

Γt = Γt−1e
µ+xt , (6)

where µ is the deterministic drift of productivity, and Γt is its stochastic trend. The state of each

productivity component is given by a persistent AR(1) process:

zt = ρzzt−1 + σzεz,t (7)

xt = ρxxt−1 + σxεx,t, (8)

where εz,t and εx,t are i.i.d. standard normal innovations which are independent of one another, i.e.,

E [εz,tεx,t] = 0. We assume that both persistence parameters, ρz and ρx, are positive but less than

one. Thus, a business-cycle shock, εz,t, has a transitory effect on the level of productivity, At. On

the other hand, a trend shock, εx,t, has a permanent effect on At because Γt is a unit root process.

Because the process xt is persistent, εx,t is akin to a long-run news shock about the growth rate of

productivity, similarly to Croce (2014) and Bansal and Yaron (2004).

7Specifically, α1 = (µ − 1 + δ)
1
ζ and α2 = 1

ζ−1
(1 − δ − µ), where µ is the constant drift of productivity defined in

Section 3.2.
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3.3 Information and Learning

We assume that the agent (the manager of the representative firm, or equivalently, the household

owning the firm) is imperfectly informed about the underlying productivity states. Specifically, the

agent does not directly observe the business-cycle state zt and the trend state xt separately. Rather,

the agent can only observe output, capital, and labor. Because log(At) = 1
1−α (log(Yt)− α log(Kt))−

log(Lt), this is equivalent to assuming that the household can only observe the level of productivity At

at each date. Thus, the information set as of time t includes the entire history of productivity shocks;

It = {At−k}∞k=0. Define ∆at ≡ log
(

At
At−1

)
. It follows from equations (5) and (6) that:

∆at = µ+ xt + zt − zt−1, (9)

and note that ∆at can be constructed given It. We assume that the agent knows the probability

distribution of z, x, and Γ. Hence, we abstract from parameter or model uncertainty, and focus on

the implications of imperfect-information about the realization of the underlying shocks.

We assume that the agent forms beliefs about z and x using a Kalman filter. It is possible to cast the

dynamics of productivity growth using a stationary state-space representation. Let σt = [xt, zt, zt−1]′

denote the current state, and ηt = [εx,t, εz,t]
′ denote the current innovations. We can re-write the

dynamics of equation (9) as:

∆at = µ+ Λσt,

σt = Tσt−1 +Rηt.

The matrices Λ1×3, T3×3, and R3×2 are defined as:

Λ ≡ [1, 1 − 1] , T ≡


ρx 0 0

0 ρz 0

0 1 0

 , R ≡


σx 0

0 σz

0 0

 .
Let σ̂t+1|t be the prediction of the agent for the underlying state σ at time t + 1 given time t

information set, i.e., σ̂t+1|t = Êt [σt+1], where the operator Ê denotes an expectation taken under the

agent’s information set, Et [·|It−1]. It follows that the law of motion for σ̂t+1|t is given by:

σ̂t+1|t = T σ̂t|t−1 + TGvt, (10)

where vt = ∆at−µ−Λσt|t−1 is the prediction error. The gain vector G3×1 is given by PΛ′F−1, where
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F is a scalar given by ΛPΛ′, and P3×3 is the steady-state estimation error covariance given by the

solution to the Riccati equation:

P = TPT ′ − TGΛPT ′ +RR′.

Similarly, let ∆ât+1|t denote the agent’s prediction for next-period’s log-productivity growth,

Êt [∆at+1]. We obtain that:

∆ât+1|t ∼ N
(
µ+ Λσ̂t+1|t, F

)
. (11)

3.4 Firm

At each date t, the manager of the representative firm chooses how much to invest It and hire Lt

in order to maximize firm value given the current stock of capital, the wage rate Wt, the stochastic

discount factor of the household Mt,t+1, and his beliefs about the evolution of productivity. The order

of events in the period between time t and t + 1 is as follows. First, the shocks εz,t and εx,t realize,

and the agent observes At. Given this observation, the agent updates his belief about zt and xt, and

forms a forecast for these state variables and for productivity next period, as in Equations (10) and

(11). Next, given these optimal forecasts, the agent selects the factors of production. The dividend of

the firm at time t is given by:

Dt = Yt − It −WtLt. (12)

We can write the firm’s maximization program recursively as follows:

V (Kt, At, σ̂t|t−1) = max
Lt,It,Kt+1

Dt + Êt
[
Mt,t+1V (Kt+1, At+1, σ̂t+1|t)

]
(13)

s.t.

(2), (3), (10), (11), (12).

The realized return of the unlevered firm at time t is given by:

RUNLEV
d,t =

Vt
Vt−1 −Dt−1

.

The first-order condition of the firm’s problem in (13) implies the following Euler equation:

1 = Êt [Mt,t+1RI,t+1] , (14)

where Mt,t+1 is the household’s stochastic discount factor and RI,t+1 is the return on investment. The
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realized return on investment is given by:

RI,t =
αYt/Kt + qt(1− δ)− It

Kt
+ qtφt

qt−1
,

where φt = φ (It/Kt), and:

qt = 1/φ′(It/Kt) (15)

is the Lagrangian multiplier of Equation (3), i.e., the shadow price of capital.

In our model, firms are all-equity financed, and there is no operating leverage incurred by fixed

costs. In the data, there is a substantial amount of financial and operating leverage. Moreover, a

considerable component of the dividend growth is due to idiosyncratic payout shocks. To incorporate

these features in a transparent fashion, we follow Croce (2014), and utilize the following levered return

as a proxy for the market excess return:

Rem,t = φlev(R
UNLEV
d,t −Rf,t−1) + σdεd,t,

where εd,t ∼ N(0, 1) captures the effect of idiosyncratic dividend shocks. Importantly, the leverage

parameter does not affect the sign of the equity premium, and the shocks, εd,t, do not covary with the

SDF, impacting only the volatility of excess returns.

3.5 Household

The representative household exhibits Epstein and Zin (1991) preferences over a consumption

stream {Ct}:

Ut =

(1− β)C
1− 1

ψ
t + βÊt

[
U1−γ
t+1

] 1−
1
ψ

1−γ


1

1− 1
ψ

, (16)

where γ denotes the household’s coefficient of relative risk aversion, and ψ denotes its intertemporal

elasticity of substitution (IES). When ψ = 1
γ equation (16) collapses to CRRA preferences. We assume

that ψ > 1
γ so that the household exhibits a preference for early resolution of uncertainty, and dislikes

uncertainty about long-run growth.

The household is endowed with one unit of labor. The household maximizes its utility by supplying

labor and participating in financial markets. The household can hold a fraction Θt of the firm, which

pays a dividend Dt as in equation (12). Consequently, the budget constraint of the household is given
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by:

Ct + Θt+1Vt = WtLt + Θt(Vt +Dt), (17)

where Lt is the hours worked, and Vt is the stock price of the representative firm, defined in equation

(13). Since the household does not derive disutility from labor, it supplies labor inelastically, and

Lt = 1 in equilibrium. The first-order condition of the household’s maximization program implies that

the stochastic discount factor (SDF) is given by:

Mt+1 = β

(
Ct+1

Ct

)1− 1
ψ

 Ut+1

Êt
[
U1−γ
t+1

] 1
1−γ


1
ψ
−γ

. (18)

Given this stochastic discount factor, the equilibrium real risk-free rate is pinned by

1/Rf,t = Êt [Mt,t+1] . (19)

3.6 Equilibrium

An equilibrium consists of wage Wt, pricing kernel Mt,t+1, firm valuation Vt, and allocations for

investment, capital, labor, consumption, and equity holding {It,Kt+1, Lt, Ct,Θt}∞t=0 such that: (i)

Given Wt and Mt,t+1, capital and labor allocations maximize program (13), (ii) Given Wt and Vt,

consumption, labor and firm holding fraction maximize (16) subject to (17), (iii) good-market clears:

Ct + It = Yt, ∀t, labor market clears: Lt = 1, ∀t, and financial market clears: Θt = 1, ∀t.

We solve the model using a perturbation method. To solve the model we first make sure that

all variables are covariance-stationary. Let X̃t = Xt/At−1. The firm and household problem can be

equivalently expressed using the detrended control variables: {K̃t+1, C̃t, Ĩt}.

3.7 Estimation

Table 1 shows the benchmark model parameters. Following Christiano, Eichenbaum, and Evans

(2005), we classify the parameters into two sets. The first set includes production and preference pa-

rameters which we calibrate based on the results of extant studies and are standard to the literature.

To match the empirical evidence, capital’s share of output, governed by α, is 36%. The quarterly

depreciation is 2.1%, suggesting an annual depreciation of about 8%, consistent with the data. Fol-

lowing the strategy of Kaltenbrunner and Lochstoer (2010), we set the adjustment cost parameter ζ

to 7.7, to ensure that the ratio between consumption growth volatility and output growth volatility

14



is consistent with the data (approximately 0.7). Consistent with the total degree of leverage (joint

operating and financial leverage) estimated in Garćıa-Feijóo and Jorgensen (2010), we set φlev to 4.18,

which is similar to the leverage parameter used by Bansal and Yaron (2004). We set σd such that its

annualized volatility σd
√

4, is 4%, consistent with Croce (2014). We also adopt a standard preference

parameter configuration in the production-based asset-pricing literature. Specifically, γ is set to 10,

while the IES, ψ, is calibrated to 1.5, implying a preference for early resolution of uncertainty. These

values are identical to Bansal and Yaron (2004), among others.

The second set, denoted θ = {µ, ρz, σz, ρx, σx, β} includes the underlying technology parameters

and is estimated using SMM. We include the time-discount rate in θ to ensure that the estimated

growth and time discount rate parameters satisfy the transversality condition. Our estimate of θ is

the solution of the following program:

θ̂ = min
θ

[
Ψ(θ)− Ψ̂

]′
V −1

[
Ψ(θ)− Ψ̂

]
,

where Ψ̂ are the points estimates of the empirical moments used in the estimation, V is a diago-

nal matrix with the empirical variances of each moment along its main diagonal, and Ψ(θ) are the

(imperfect-information) model-implied equivalent of the moments, given the quarterly parameters θ.

Given a set of parameters, we compute model-implied moments based on 200 simulations of short sam-

ple paths of 200 quarters each. Each model-implied path is time-aggregated to annual observations.

The corresponding empirical sample for the moments spans from 1964 to 2018.

The moments utilized include (i) unconditional annual moments: the mean, standard deviation,

and autocorrelation of consumption growth, output growth, investment growth and (ii) k-period vari-

ance ratios for the time-series of annual consumption and output growth. In all, there are 6 estimated

parameters and 14 moments. Table 2 shows these moments in both the model and the data.8 For each

model-implied moment, the table presents the median across all short-sample simulations, as well as

the 90% confidence interval. Below, we explain how each parameter is identified.

The mean of annual consumption growth, output growth, and investment growth jointly identify

the parameter µ. We estimate µ to be about 0.49%, which implies an annual real consumption growth

rate of 1.96%, consistent with its empirical value of 1.93%. The time discount rate β to estimated

8The table shows all macro-related moments used in the estimation. See Table 3 for the risk-free moments.
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to be 0.991. It is identified using the mean of the real risk-free rate, which is 0.67% in the model

compared to 0.69% in the data.

There are four remaining parameters governing the exogenous productivity process: σz, ρz, σx, ρx.

These parameters are over-identified using our menu of moments. First, the standard deviation (au-

tocorrelation) of consumption, output, and investment growth rates are directly governed by σz and

σx (ρz and ρx). Second, let the k-variance ratio of variable y be defined as

V R(k) =
Var∆yt→t+1

kVar∆yt→t+k
.

Kaltenbrunner and Lochstoer (2010) show that a production model’s endogenous variables feature a

unit root if and only if productivity has a stochastic trend. Thus, if the level of productivity is only

driven by business-cycle (εz) shocks then V R(k) < 1,∀k > 1. However, in the data, the variance ratios

of both consumption and output growth rates are greater than one. These ratios can only be larger

than one under an amalgamation of transitory and permanent shocks. Consequently, for any fixed

k, the variance ratios of consumption and output help to identify the magnitude of σx compared to

σz. All else equal, the magnitude of ρx relative to ρz dictates how sizable the permanent component

is relative to the transitory component in future periods. Consequently, the persistence parameters

impact the change in the variance ratios between two consecutive k’s (i.e., V R(3) in comparison to

V R(2)).

The estimation yields that σz is 0.017, and σx is 8.4 ·10−4. Both estimates are statistically distinct.

We find that ρz is 0.88, and that the x process must be highly persistent, similar to Croce (2014), in

order to render sufficiently high variance ratios. Interestingly, our estimates are very similar to those of

Blanchard, L’Huillier, and Lorenzoni (2013). Due to modeling differences, we cannot employ the exact

parametrization of Blanchard, L’Huillier, and Lorenzoni (2013).9 However, in both studies, business-

cycle shocks are estimated to be approximately 20 times larger than trend shocks (σz/σx ≈ 20). For

robustness, we apply the Kalman filter to the TFP growth time-series of Basu, Fernald, and Kimball

(2006), and re-solve the model in Internet Appendix IA.3.10. The filtered ratio σz/σx is approximately

9Specifically, the model of Blanchard, L’Huillier, and Lorenzoni (2013) also includes a noisy signal about the trend
shock, x, which is utilized in their estimation.

10As we explain in the appendix, we do not employ the TFP time-series of Basu, Fernald, and Kimball (2006) for the
benchmark parametrization, because the TFP data can deviate from ∆a due to empirical time-variation in markups and
utilization.
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24, very close to the SMM-implied ratio.

Utilizing the estimated parameters, all empirical moments in Table 2 fall inside the model’s con-

fidence intervals under imperfect-information. The empirical autocorrelation of consumption, output

and investment growth rates are all very close to the model. While the model-implied volatility of

consumption growth is 1.5%, the lower bound of the model’s confidence interval is approximately 1.2%,

in line with the data, and the implied volatility of output growth precisely matches the data.

Relative to imperfect-information, a full-information environment does not substantially alter most

of the model’s unconditional moments. There are a few exceptions. Under full-information, the

autocorrelation of consumption growth rises, which generates a modest overestimate of both VR(2)

and VR(3). A similar effect is observed for the autocorrelation of output growth. The effect of

learning is more meaningful for conditional moments, or the dynamics of macroeconomic variables, as

we illustrate next.

4 Learning Implications for Beliefs

We analyze the implications of “rational confusion” for beliefs about the transitory and permanent

states of productivity growth. In Section 4.1, we examine learning’s impact on growth expectations,

which drive investment dynamics (see Section 5) and the sign of the equity premium (see Section

6.2). In Section 4.2, we analyze the effect of learning on uncertainty, which plays a key role in the

amplification of the risk premium (see Section 6.3.2). Finally, in Section 4.3 we examine the perceived

share of the forecast error variance associated with each shock, which is pivotal for reconciling our

results pertaining to long-run risk and term structures (see Sections 6.3.1 and 6.3.3).

4.1 Implications for Perceived Growth

By combining equations (10) and (11) we obtain the agent’s expectation of productivity growth:

∆ât+1 =µ+ ρx
(
x̂t|t−1 + gxvt

)
+ (ρz − 1)

(
ẑt|t−1 + gzvt

)
(20)

≡µ+ ρxx̂t|t + (ρz − 1) ẑt|t, (21)

where gx ≡ [1, 0, 0]G and gz ≡ [0, 1, 0]G are the positive gains with respect to x and z, respectively,

and vt is the prediction error. Equations (20) and (21) have an intuitive interpretation. When

productivity growth is higher than expected (vt > 0), both ẑt|t and x̂t|t increase: the agent realizes
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the positive shock could be due to either a positive business-cycle shock or a positive trend shock.

The inability to perfectly distinguish between the two in real time leads to rational confusion whereby,

under learning, the household partially endows each type of underlying shock (business-cycle or trend)

with the characteristics of its counterpart.

Consider the case in which the prediction error, vt, is driven by a business-cycle shock, εz,t. Under

full-information, such a shock would be fully absorbed into agents’ beliefs about zt and, hence, their

expectation of zt+1. In contrast, Equation (20) implies that this shock is only partially absorbed

into agents’ beliefs about the state of the business-cycle process under learning, ẑt|t. Rather, since

households cannot perfectly disentangle the shocks, they also rationally update their beliefs about the

trend component, x̂t|t, i.e., a portion of the business cycle shock is perceived to be permanent. In this

case, the innovation to the belief about the trend, x̂t|t− x̂t|t−1, is given by ε̂trendy
z = gxσzεz,t. We refer

to such innovations as trendy business-cycle shocks.11

Rational confusion distorts the agent’s belief about future productivity growth. To demonstrate

how, it is constructive to further simplify our expressions by assuming that all beliefs are at their

steady-state value. This implies that vt = ∆at − µ and so equation (20) simplifies to:

∆ât+1 − µ = (∆at − µ)(ρxgx + (ρz − 1)gz) (22)

For ease of expression, suppose that productivity growth at date-t is driven only by a business-cycle

shock. Let Et [∆at+1] denote the expectations under full information. Then, rewriting equation (22),

we can compare the full-information forecast to the forecast under imperfect-information:

∆ât+1 − Et [∆at+1] = σzεz,t (ρxgx + (ρz − 1)(gz − 1))︸ ︷︷ ︸
>0

. (23)

If εz,t > 0, a perfectly-informed agent expects lower growth in the future: transitory shocks mean-

revert. In contrast, an imperfectly informed agent rationally believes that some portion of the realized

forecast error may be persistent. This is because a fraction of the observed ∆at is absorbed into

ε̂Trendy
z , and positive trend shocks increase productivity growth due to their permanent effect on the

productivity level. As a result, she expects future productivity growth to be higher than a perfectly-

11There is an analogous effect of a trend shock (εx,t) on beliefs about the business-cycle component since a fraction
of it is perceived as transitory. This analogous component plays a non-trivial role for investment behavior, as shown in
Section 5.2. However, as explained in Appendix A, the amplification in risk-prices under imperfect-information is driven
for the most part by trendy business-cycles.
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informed agent. Crucially, as shown in (23), the effect of this trendy business cycle shock on households’

growth perception decays at a rate ρx, just like a true trend shock. These long-run productivity shocks,

which are endogenously created via rational confusion, play a key role in explaining asset-prices, as

we detail in Sections 4.3 and 6.

The corresponding case in which productivity growth is driven solely by the trend shock is com-

pletely symmetric, as can be seen by rewriting equation (22):

∆ât+1 − Et [∆at+1] = σxεx,t (ρx(gx − 1) + (ρz − 1)gz)︸ ︷︷ ︸
<0

. (24)

Relative to the perfectly-informed household, under imperfect information, the persistence of trend

shocks is attenuated. This is because, in updating her beliefs, some of the observed productivity

growth is perceived to be driven by the business-cycle component, which is mean-reverting.

Collectively, equations (23) and (24) highlight a novel implication of households’ rational confusion.

While in standard settings, imperfect-information attenuates the revision in an agent’s beliefs, in our

setting learning can actually flip the sign of the agent’s expected productivity growth. This flip can

arise immediately: e.g., a trend shock, which leads to positive growth, may be primarily attributed

to the business-cycle process so that households expect negative growth. This flip can also occur over

time: e.g., if households initially expect negative growth following a business-cycle shock, their beliefs

can become positive before converging to the truth, through the persistence of trendy business-cycle

shocks. In Section 5.1, we show that both patterns arise in our benchmark calibration.

4.2 Implications for Uncertainty

Under both full and imperfect information, households face three sources of risk with respect to

their beliefs about the underlying productivity process: (i) shocks to realized growth (i.e., prediction

errors), (ii) revisions to beliefs about future growth, and (iii) the covariance between these two sources

of uncertainty. In what follows, we analytically characterize the impact of learning on each source.12

Under imperfect information, agents face more uncertainty about the next period’s productivity

growth: the forecast error, vt+1, is due not only to the underlying shocks, εx,t+1 and εz,t+1, as under

full information, but also their imperfect forecasts (x̂t|t and ẑt|t) of the true underlying states (xt and

12We prove inequalities (25), (26), and (27) in Appendix A
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zt). This implies that

σ2
v > σ2

x + σ2
z . (25)

In contrast, agents revise their beliefs less aggressively and, as a result, the perceived uncertainty

about the state(s) of expected future productivity shrinks under imperfect information. Utilizing the

notation from Equation (20), where agents update their belief about x̂t|t and ẑt|t by multiplying the

forecast error, vt, by the gains, gx and gz, respectively, this implies that

g2
xσ

2
v < σ2

x g2
zσ

2
v < σ2

z . (26)

Thus, the first source of risk is amplified under learning while the second is attenuated.

The impact of learning on the covariance between realized forecast errors and agents’ revised beliefs

depends upon the type of shock. Equation (20) implies that when productivity growth is higher than

expected (i.e., vt > 0), both ẑt|t and x̂t|t increase due to rational confusion. However, a positive

forecast error could also be due to either (i) under-estimation of the trend shock (i.e., xt > x̂t|t) or (ii)

over-estimation of the business-cycle shock (i.e., zt < ẑt|t). Thus, agents further update their forecast

of the trend shock in the same direction as vt since, on average, a positive forecast error implies that xt

was under-estimated, i.e., the covariance increases. In contrast, the upward revision in agents’ beliefs

about the business-cycle state is attenuated since, on average, a positive forecast error implies that zt

was over-estimated, i.e., the covariance falls. As a result,

gxσ
2
v > σ2

x gzσ
2
v < σ2

z . (27)

As our quantitative analysis in Appendix A suggests, these opposing effects play a significant role in

the amplification of the risk premium under imperfect information.

4.3 Implications for Perceived Long-run Productivity Risk

Under imperfect information, it is straightforward to see that

∂∆ât+1

∂vt
> 0 ⇐⇒ ρx

gx
gz

+ (ρz − 1) > 0. (28)

Whether agents expect realized productivity shocks to persist (∂∆ât+1

∂vt
> 0) or mean-revert (∂∆ât+1

∂vt
<

0) depends not only on the persistence of the underlying productivity processes but, critically, on the

ratio of the gains, gx
gz

. In equilibrium, this ratio depends on the volatility and persistence parameters

via the fixed-point non-linear Riccati equation. While we cannot solve for the ratio in closed-form, we
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can compare it to the full information counterpart, σx/σz, utilizing the inequalities in (27):

gx
gz

>
σ2
x

σ2
z

. (29)

Equation (29) implies that, for all parameter values, the share of the forecast error variance asso-

ciated with the trend (business cycle) shocks is amplified (attenuated) under imperfect information

relative to full information. This observation, combined with the dynamics of expected productivity

growth in Equation (28), bears two key implications for the magnitude and the persistence of long-run

productivity risk.

First, the effect of rational confusion on the perceived growth associated with business-cycle relative

to trend shocks do not offset one another. In particular, since gxσ
2
z > gzσ

2
x, the effect of trendy

business-cycles dominates the analogous component of trend shocks that is believed to be transitory.

Second, this suggests that, on average, households expect more persistence in the realized shocks under

learning since a larger fraction of the forecast error variance is believed to be permanent, on average.

Intuitively, these implications affect the risk premium the household commands.

5 Learning Implications for Macro Dynamics

We analyze the dynamics of consumption, investment, and output under “rational-confusion.”

In Section 5.1 we consider the risk-neutral case to establish the importance of beliefs on the results

that follow. In Section 5.2 we consider the risk-aversion case, and highlight that, in contrast to

full-information, investment is always procyclical under imperfect-information.

5.1 Macroeconomic Dynamics under Risk-Neutrality

Figure 1 plots impulse response function to both business-cycle (εz) and trend (εx) shocks under

risk-neutrality. First, consider the response to a transitory productivity shock (Figure 1a). Under

full-information (the solid blue line), Et [∆at+1] < 0, and this expectation converges to zero as the

impact of the shock decays. Under imperfect-information (the dotted red line), expected growth in

the first period is still negative because ρxgx + (ρz − 1)gz < 0 in our benchmark estimation, consistent

with (22). However, under rational confusion the firm ascribes a portion of the shock to εx (a trendy

business-cycle shock) and so Êt [∆at+1] ≈ 0, consistent with equation (23). Moreover, trendy business-

cycle shocks are expected to persist (ρx > 0) and, in this setting, Êt [∆at+1] turns positive in the
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succeeding periods, a reversal of sign driven by the mechanism described in Section 4. In contrast, a

permanent productivity shock increases expectations under full-information, i.e., Et [∆at+1] > 0, while

with learning, rational confusion suggests that the firm’s expectation decreases precipitously such that

Êt [∆at+1] < 0 (see Figure 1b). This is consistent with equation (24): imperfect-information causes

beliefs to change sign if ρxgx + (ρz − 1)gz < 0.

These beliefs drive the firm’s investment policy. While a closed form solution to equation (14) is

not admissible, we can rewrite the firm’s optimality condition for the special case of risk neutrality

and no adjustment costs (i.e., Mt,t+1 = β and ζ →∞):

1 = Êt
[
β
(
αA1−α

t+1 K
α−1
t+1 + (1− δ)

)]
(30)

Rearranging, and using Equations (10) and (11), we obtain:

Kt+1 =

(
1

α
(

1

β
+ δ − 1)

) 1
α−1

A1−α
t exp

(
(1− α)Êt∆at+1 +

1

2
(1− α)2F

)
. (31)

Intuitively, equation (31) suggests that the desired level of capital depends upon both the current

productivity, At, and the firm’s belief about growth, Êt [∆at+1]. As described in Section 4.1, learning

shifts beliefs about expected productivity growth relative to full information and, as a result, alters

investment growth in an analogous fashion.

For example, following the realization of a business-cycle chock, the firm increases its investment

growth rate under imperfect-information by approximately a factor of five compared to full-information

(Figure 1c). Under imperfect-information, the realization of a positive, trendy business-cycle shock

implies that ∆ât+1 − Et [∆at+1] > 0 (see equation (23)) and so the agent over-invests. This initial

amplification of investment under learning is sufficiently large that the growth rate of consumption

falls below zero (Figure 1e), due to market clearing. The opposite arises when a trend shock is realized

(Figure 1d) and so the agent underinvests under imperfect-information by equation (24).

These changes in investment under learning shift also the sign of expected consumption growth.

Under full-information, a transitory shock increases contemporaneous consumption and investment is

modest: expected future consumption growth is negative (Figure 1g). Under learning, the realization

of a trendy business-cycle shock sufficiently amplifies investment so that expected future consumption

growth turns positive. In contrast, a positive trend shock leads to positive investment growth under

full-information and, therefore, a sharp increase in expected future consumption (Figure 1h). Under
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imperfect-information investment is muted which attenuates expected consumption growth.

5.2 Macroeconomic Dynamics under Risk-Aversion

We now turn to the benchmark case in which the household exhibits Epstein and Zin (1991)

preferences. The precision of the signal that the firm acquires from realized output does not depend

on capital level (as in Van Nieuwerburgh and Veldkamp 2006, for instance), and so the firm’s beliefs

about productivity are unchanged from Section 5.1.

Under full-information and risk aversion, the firm increases investment in response to a transitory

shock relative to risk-neutrality (Figure 2c). With risk aversion (or more precisely, a positive IES), the

agents want to smooth consumption which necessitates higher investment. This attenuates the fall in

expected consumption growth (Figure 2g). Imperfect-information induces two, countervailing effects

on investment: it increases the perceived marginal product of capital, but decreases the incentive to

smooth consumption (because trendy business-cycle shocks increase expected consumption growth.)

Only the first effect arises under risk-neutrality. With risk aversion, the two effects nearly offset

each other, so that the imperfect-information impulse response functions on real quantities are nearly

indistinguishable from those derived under full-information (see Figure 2c).

In contrast, following a trend shock, investment growth “flips” signs when comparing learning

to full-information (Figure 2d). Trend shocks affect the long-term much more than the short-term

(estimated ρx is high, while σx is relatively small). In essence, the trend shock is akin to a news

shock about the future (plus a small short-run innovation). In our estimated model, as well as in

many others, these news shocks lead to lower investment.13 When a positive shock to the long-

run trend of productivity materializes, the continuation value increases. Higher expected productivity

generates a substitution effect that increases the opportunity cost of consumption, and simultaneously,

an income effect, that allows the agent to feel wealthier. The lower (higher) the IES is, the more current

consumption and continuation utility are complements (substitutes). If the IES is not too high (in our

13Barro and King (1984) shows that a one-sector growth model generates aggregate comovement only in the presence
of contemporaneous (short-run) shocks to total factor productivity. News shocks generate a negative correlation between
consumption and investment. Jaimovich and Rebelo (2009b) also show that in the absence of flexible utilization, good
news about future productivity make agents wealthier, leading to higher consumption, but lower investment and labor
supply. More recently, Croce (2014) demonstrates this point, in a model with Epstein-Zin preferences, and when the IES
is set close to 1.
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case the IES is 1.5, as in Bansal and Yaron 2004), the income effect dominates, and the agent finds it

optimal to increase consumption by reducing investment.14

The negative response of investment to trend shocks under full-information contradicts extant em-

pirical evidence. Beaudry and Portier (2004) identify TFP news shocks using a vector error correction

model and find that investment rises both in response to transitory and trend news shocks shocks.

Similarly, Barsky and Sims (2011) identify TFP news shocks using a structural VAR, showing that

news shocks have a positive impact on stock prices (which comove with investment).

Rational confusion aligns the model with the data, as each shock partially inherits the attributes

of its counterpart. Under full-information, the response of investment to transitory shocks is positive.

This is a manifestation of the Barro and King (1984) result where only short-run productivity raises

investment. When a trend shock is realized under imperfect-information, a large fraction of the shock

is perceived to be transitory (σz > σx) such that investment increases, in-line with the data. Put

differently, with learning, the expected growth rate of consumption is nearly zero following a trend

shock. As a result, the income effect largely disappears, and investment growth increases (Figure 2d).

6 Learning Implications for Asset Prices

We explore the implications of “rational confusion” for asset pricing. Section 6.1 summarizes key

pricing moments: in particular, learning flips the sign of the equity premium and magnifies its absolute

value. In Section 6.2 we dissect the key mechanism and connect the change in the equity premium’s

sign under learning to the firm’s investment policy. Section 6.3 examines how learning affects the

source of long-run risk, the magnitude of the equity premium, and the term structure of risk. This

is done by contrasting the model’s predictions to an equivalent endowment economy, allowing us to

decouple the role of learning from production. Lastly, in Section 6.4 we consider the impact of learning

on the cyclicality of stock prices and the risk free rate.

14In our model, trend shocks lower investment as long as the IES is not too high. Given our estimated model parameters,
we find that investment declines following a trend shock so long as the IES is lower than 1.8. This is substantially higher
compared to recent estimates of the IES, placing it very close to 1 (see, e.g., Calvet, Campbell, Gomes, and Sodini 2021).
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6.1 Imperfect-Information and Asset-Pricing Moments

Table 3 reports model-implied asset-pricing moments against their empirical counterparts. The

model-implied moments are obtained both from the imperfect-information model detailed in Section

3, as well as from an otherwise identical model in which the agent is fully-informed about zt and xt.

Under imperfect-information, the model-implied sample average of the firm’s excess return (equity

premium) is sizable, at about 2.6% per annum. While the point estimate of the empirical equity

premium (4.8%) is larger, the model-implied premium falls within the confidence interval of the data.

The model-implied premium is larger than the risk premium on aggregate wealth estimated by Lustig,

Van Nieuwerburgh, and Verdelhan (2013). Moreover, the premium under learning is nearly ten times

as large as the one obtained in the framework of Kaltenbrunner and Lochstoer (2010) with early

resolution of uncertainty. We purposefully abstract from more elaborate adjustment costs (which could

further increase the absolute value of the risk premium) for parsimony, since our main interest is its

relative magnitude compared to full-information.15 We find that learning not only amplifies the equity

premium (the difference between the equity premium under imperfect- and full- information is about

3.2%), but it flips its sign: with full-information the equity premium is -0.5%.16 The amplification

effect of learning is even more strongly manifested for the Sharpe ratio. The Sharpe ratio implied

by the imperfect-information model is about 50%. This is even more sizable than the empirical

counterpart, but the model-implied and data-implied confidence intervals overlap. By contrast, under

full-information, the Sharpe ratio (in absolute value) is approximately half of the ratio in the data.

The real annual risk-free rate is about 0.7% in both the imperfect-information model and the data.

Interestingly, learning not only amplifies the equity premium, as discussed above, but it also dampens

the risk-free rate. Under full-information, utilizing the same parameter values, the risk free rate is

about 2.2%. The volatility of the risk free rate under imperfect-information is 0.65% with an upper

bound of 1.2%, which is close to the empirical confidence interval. Finally, we note that learning

15Notably, the model-implied equity premium under learning can be higher in absolute terms in a model featuring
asymmetric adjustment costs, which make it harder to smooth profits in bad states (making dividends less countercyclical;
see, e.g., Zhang (2005)). We discuss how additional frictions can impact the equity premium in Section IA.1. For instance,
we show that the risk premium of a consumption claim is above 8% p.a. in a production model with learning.

16In short sample simulations, the full-information equity premium can be slightly positive, with the presence of
idiosyncratic dividend shocks. The population-sample model-implied equity premium in this case is strictly negative, at
-0.57%.

25



slightly attenuates the volatility of the risk free rate.

6.2 Inspecting the Mechanism

The conditional equity premium in the model can be generally written:

Et[R
e
t+1] = βz,tλz,t + βx,tλx,t,

where

βj,t =
∂Ret+1

∂εj,t+1
,

λj,t = −∂Mt,t+1

∂εj,t+1
j ∈ {z, x}.

βj,t is the exposure of the firm to shock j, while λj,t is the market price of risk of the shock. While

both exposures and prices of risk can be time-varying, to make the mechanism clear we consider

their unconditional magnitudes in the (stochastic) steady-state. In what follows, we drop the time

subscript from the exposures and risk prices to denote steady-state values. The unconditional prices

of risk (exposures) can be computed via model-implied impulse responses from the underlying shocks

to the firm’s excess return (household’s marginal utility). We analyze the exposures and prices of

risk under both information environments below to clarify the sign and decomposition of the equity

premium.

6.2.1 Full-Information

In our model, the valuation of the representative firm and investment co-move. If the representative

firm wants to expand its capital stock, it is required to pay capital adjustment costs, which restrict

its ability to fully absorb productivity shocks through investment. Thus, since shocks are not fully

absorbed in quantities, they are absorbed in installed capital’s price. Because the returns to scale in

our model are constant, this shadow price, or Tobin’s q from Equation (15), is a sufficient statistic

for the ex-dividend firm valuation. In other words, the ex-dividend firm valuation exposure to a

productivity shock, εj,t, is ∂Vt/∂εj,t = ∂
∂εj,t

q(It/Kt)K
′. As q′ > 0, the valuation of the (dis)investing

firm rises (falls), and thereby covaries more with aggregate productivity. As discussed in Section 5, a

business-cycle shock εz,t raises investment, and as a result, ∂Vt/∂εz,t > 0 which implies that βz > 0.

On the other hand, a trend shock εx,t initially drops investment under full-information and so βx < 0.
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The innovation to the stochastic discount factor in Equation (18) can be written as:

Mt−1,t − Et−1Mt−1,t = −γ (∆ct − Et−1∆ct)−
(
γ − 1

ψ

)(
log(Ut

Ct
)− Et−1 log(Ut

Ct
)
)
. (32)

Hence, under early resolution of uncertainty (i.e., γ− 1
ψ > 0), a productivity shock decreases marginal

utility (and therefore has a positive price of risk) if it either (i) increases current consumption or (ii)

raises the continuation utility. The blue line in Figures 3a and 3b shows how log(Mt−1,t) responds

under full-information to a business-cycle and a trend shock, respectively. In both cases, a positive

shock decreases marginal utility. The magnitudes are extremely asymmetric however: the impact of

a trend shock on the marginal utility is approximately 0.4 (in absolute value), while the effect of the

business-cycle shock is close to zero.

We briefly outline the intuition for this result, which echoes the finding of Kaltenbrunner and

Lochstoer (2010). As previously discussed in Section 5, and shown in Figures 2e and 2f, both the tran-

sitory business-cycle shock and the permanent trend shock increase contemporaneous consumption.17

With early resolution of uncertainty, however, the two shocks have an opposite impact on Ut/Ct.

Figure 3c (3d) shows that the business-cycle shock decreases the continuation utility to consumption

ratio while a trend shock increases it.

A positive trend shock implies that consumption increases not just contemporaneously, but also in

the future, as the shock permanently shifts technology (and output) to a higher level. Note that the

innovation of the utility-to-consumption ratio is proportional to
∑∞

s=1 κ
j(Et −Et−1)∆ct+s, where κ is

a log-linearization parameter that is close to one. Since a positive trend shock increases the expected

future consumption growth, as shown in Figure 2h, it raises the continuation utility.

A positive business-cycle shock also implies that consumption increases contemporaneously, but

because the technology shift is transitory, it is expected to be lower in the future, eventually converging

to its pre-shock level. As demonstrated in Figure 2g, the expected consumption growth is persistently

negative and the continuation utility falls. Thus, the impact on the continuation utility amplifies the

price of risk for trend shocks, while (almost) completely eliminating the price of risk for business-cycle

17Therefore, if the household exhibited CRRA preferences (γ = 1
ψ

), both shocks would have a positive price of risk.
Furthermore, given that the expected impact of business-cycle shocks on current consumption is larger in our calibration,
such shocks would bear a larger risk price.
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shocks, so that λx >> λz ≈ 0.

Combined, the contribution of business-cycle shocks to the equity premium is close to zero since

βz︸︷︷︸
(+)

λz︸︷︷︸
≈0

while the contribution of trend shocks, βx︸︷︷︸
(−)

λx︸︷︷︸
(+)

, is negative. Taken together, the full-

information environment gives rise to a negative equity premium.

Relative Contribution. The relative contribution of business-cycle shocks to the equity premium

can be expressed as:

βzλz
βzλz + βxλx

, (33)

while the contribution of permanent shocks is the complement to 100%.18 Panel A of Table 4 that

under full-information, the ratio (33) is approximately -45%, broadly consistent with the findings of

Kaltenbrunner and Lochstoer (2010).19

6.2.2 Imperfect-Information

The dashed red line in Figure 2c shows that imperfect-information induces only a small attenuation

effect on the response of investment to a business-cycle shock. Therefore, βz is almost identical to

the full-information model. For trend shocks, the effect of learning is not only quantitative, but also

qualitative (see Figure 2d). As explained in Section 5, trend shocks increase investment under learning

so that while βx is negative under full-information in our estimation, it is positive under learning.

Crucially, learning also affects the stochastic discount factor, as is apparent upon examination of

the dashed red lines in Figures 3a and 3b. While both shocks still decrease marginal utility, in contrast

to the setting with full-information, the effect of the trend shock is now quantitatively small, while

the effect of the business-cycle shock is now sizable. We explain this key result in what follows.

As discussed in Section 6.2.1, an observed increase in output raises the continuation utility if the

agent believes that it is driven by a permanent shock. Under imperfect-information, however, the

agent does not immediately know if a higher output realization was triggered by a permanent or a

transitory shift to productivity. The agent can learn if the shift is permanent only gradually over

time, by tracking output’s trajectory in future periods. Thus, following any unanticipated increase

18The risk exposures βj , j ∈ {z, x} are computed by the contemporaneous impulse-response of εj to Rem. Similarly,
the market prices of risk λj are computed by the impulse-response of εj to M .

19The contribution of z-shocks in this case is negative because βzλz > 0 while the equity premium is negative, due to
permanent shocks.
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in output the agent places some likelihood that the shift is permanent and some likelihood that it is

transitory where, as discussed in Section 4, the likelihood ascribed to each depends on the relative size

of the two shocks.

Consequently, when a trend shock realizes, the agent does not ascribe all of the unexpected in-

crease in output to the permanent component. Rather, the agent initially believes that most of the

unexpected variation is caused by the business-cycle shock, since these shocks are much more siz-

able. Because business-cycle shocks (under full-information) negatively predict consumption growth,

this belief dampens the immediate response of the utility-to-consumption ratio to the realization of a

trend shock, as seen in the red dashed line of Figure 3d. This, in turn, significantly attenuates the

market price of risk of trend shocks, λx, in comparison to perfect information.20

Similarly, when a business-cycle shock realizes, the agent does not ascribe all of the prediction

error to the transitory component. Instead, the agent believes that some of it is due to the permanent

component, equivalent to a positive realization of a trendy business-cycle shock (ε̂Trendy
z > 0). Although

the trendy business-cycle shock to productivity is smaller in magnitude compared to the fraction of the

prediction error ascribed to the transitory component, the agent believes that a trendy business-cycle

shock is highly persistent: through the lens of the Kalman filter, it inherits the same persistence as

that of true trend shocks, ρx. Consequently, trendy business-cycle shocks induce a persistent increase

in expected consumption growth, and the price of risk of business-cycle shocks, λz, is positive and

larger with imperfect-information.

Combined, the contributions of both business-cycle and trend shocks to the equity premium are

positive given βz︸︷︷︸
(+)

λx︸︷︷︸
(+)

and βx︸︷︷︸
(+)

λx︸︷︷︸
(+)

, respectively. As a result, the equity premium flips its sign

compared to full information. We note that under imperfect information the prices of risk of both

shocks should share the same sign. Similarly, the risk exposures to both shocks should share the

same sign: if the agent only observes the change in total productivity, but not the underlying nature

of the change, the sign cannot differently depend on the underlying nature of the shock. However,

the relative magnitude, and the contribution to the equity premium from the two shocks is highly

20As seen in Figure 3d, the utility-to-consumption ratio gradually but slowly increases over time, as the agent ascribes
a growing fraction of the initial shock to the permanent trend component. However, the price of risk is affected by the
immediate response of the utility-to-consumption ratio.
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asymmetric.

Relative Contribution to the equity premium. Panel A of Table 4 shows the ratio (33)

under learning. In contrast to full-information, almost the entire magnitude of the equity premium

is explained by transitory business-cycle shocks rather than permanent shocks under learning. When

agents must forecast productivity changes from aggregate output, transitory shocks explain as much

as 99% of the premium. This arises due to the sharp amplification (attenuation) of λz (λx) under

learning. Next, we link these effects to how transitory and permanent productivity shocks relate to

endogenous short- and long-run consumption risk.

6.3 Consumption Risks: The Role of Learning and Production

In what follows, we further dissect the role of imperfect-information and production for endogenous

consumption risks. We establish that under learning (i) business-cycle shocks are the primary drivers

of expected consumption growth fluctuations; (ii) consumption risk compensation is magnified due to

both an amplified quantity of risk as well as altered risk exposures; (iii) the term structure of real

yields (expected equity returns) becomes more downward (upward) sloping.

To decouple the role of learning from the impact of flexible investment, we build on the insights

which arise from an analogous economy where consumption is exogenous but subject to both transitory

and permanent shocks as in our benchmark model. Specifically, in Appendix A, we first characterize

analytically the risk exposures and prices and then quantify them utilizing the estimated parameters

from the benchmark model. We refer to this framework as the “endowment economy”, in contrast to

our “production economy” from Section 3.

Notably, many of the implications of learning described in Section 6.2.2 arise in the endowment

economy. As in the production economy, learning amplifies the risk premium and reduces both the

risk-free rate and its volatility. Moreover, business-cycle shocks explain little (most) of the risk pre-

mium under full information (learning). Finally, as in production, rational confusion is the primary

quantitative driver of the risk premium amplification.

However, not all of the production-based results arise in the endowment economy. Intuitively, just

as rational confusion bears implications for beliefs about consumption and the SDF (as can be seen in

the endowment economy), rational confusion also bears implication for investment and risk exposures
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(and those are only captured in production). Furthermore, as we detail next, the endogeneity of

consumption also plays a non-trivial role.

Specifically, there are three key features for which production is pivotal: In Section 6.3.1, we map

the findings to the Bansal and Yaron (2004) framework, and show that a positive nexus between

business-cycle shocks and expected consumption growth shocks depends (partially) on flexible invest-

ment. In Section 6.3.2, we decompose the risk premium amplification into distinctive channels, and

emphasize how production enhances the impact of learning on the risk premium above and beyond

the endowment economy case. In Section 6.3.3, we demonstrate how the term structure of equity risk

premia differs between production and endowment under imperfect information.

6.3.1 Economic Origin of Long-Run Risk

Can long-run risk originate from business-cycle shocks? As we show next, the answer hinges on

both the information environment and the endogeneity of consumption. To quantify the relation

between business-cycle shocks and innovations to long-run risk, we perform a simulation exercise.

First, we simulate population paths of the exogenous shocks εz and εx, from which we obtain model-

implied population paths of expected consumption growth. Then, letting et ≡ Et[∆ct+1], we fit et

into an auto-regressive process: et+1 = const+ρeet+ηt, where ηt is the expected consumption growth

innovation. Finally, we compute the correlation between ηt and the contemporaneous business-cycle

shock (εz,t). We perform this for both the production and endowment economies, under full- and

imperfect-information.

Endowment economy. Under full-information, a trend shock induces a positive ‘long-run risk’

impact on consumption growth, as in Bansal and Yaron (2004). However, due to mean-reversion,

business-cycle shocks are unambiguously akin to a negative ‘long-run risk’ shock. Indeed, Table

Appendix-A.1 of the Appendix shows that the correlation between business-cycle shocks and ηt is

-0.91 under full-information.

Under learning, the relation between business-cycle shocks and long-run risk is more nuanced.

When a business-cycle shock realizes, a part of the observed change in the exogenous process is

perceived to be transitory - this lowers expected consumption growth as in full-information. On the

other hand, a part of the shock is rationally perceived to be permanent, and a trendy business-cycle
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shock is realized. Such shocks behave like ordinary ‘long-run risk’ shocks and render a small but highly

persistent increase in future consumption growth. In the endowment economy, realized shocks end-up

increasing expected consumption growth under learning if equation (28) holds.

This condition, however, is not satisfied by the benchmark model estimation of Table 1. Indeed,

Figure 2a shows that in our parametrization, a positive business cycle shock drops expected produc-

tivity growth (which is identical to expected consumption growth in the endowment model), though

less so under learning compared to full-information. If the agent consumes the productivity process,

as in the endowment case, it would imply that a business cycle shock lowers expected consumption,

similar to full-information. Consistently, Table Appendix-A.1 in the Appendix shows that while the

correlation between εz,t and ηt is higher under learning than full-information, it remains negative.

Production economy. Intuitively, as in the endowment economy, business-cycle shocks lower

expected consumption growth under full-information. Indeed, panel B of Table 4 shows that in our

benchmark full-information model the correlation between business-cycle shocks and ηt is -0.83.

In contrast to the endowment economy, however, condition (28) does not have to hold in order

for business-cycle shocks to increase expected consumption growth. Under production, consumption

is endogenous, and its future value depends only partially on expected productivity growth. Under

imperfect-information, a business-cycle shock is followed not only by (i) higher expectations for pro-

ductivity growth (via trendy business-cycle shocks) but also (ii) an increase in investment (see Figure

1c). The combined effect of these two forces implies that perceived future output growth is consid-

erably larger than in the endowment economy, which flips the expectation of consumption growth

induced by business-cycle shocks: it turns positive under imperfect-information (see Figure 2(g)).

As a result, panel B of Table 4 shows that the correlation between ηt and εz,t is both positive

and sizable under learning (approximately 0.8). Moreover, the correlation between expected con-

sumption growth innovations and εx,t largely disappears (approximately one-tenth as large as under

full-information). In short, our estimation suggests that transitory shock realizations are responsible

for most of the variation in the beliefs that govern long-run risk. Though both positive trend shock and

positive business-cycle shocks contribute positively to the belief about the state of xt, trendy business-

cycle shocks are quantitatively more important because of the relative size of transitory shocks.
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The above suggests that production is important for micro-founding positive long-run consumption

risk via business-cycle shocks. In particular, our estimation implies that rational confusion may not be

sufficient to overturn the expectation of productivity growth from negative to positive, but sufficient

to overturn the expectation of consumption growth.

6.3.2 The Magnitude of Risk Premia

Through what mechanisms is the risk premium amplified? Learning can affect risk premia through

its impact on both the quantity of risk (uncertainty) and risk exposures. While learning amplifies

the total quantity of consumption risk in both production and endowment economies, it substantially

affects risk exposures only in the production setting.

Endowment economy. Recall that Section 4 highlighted three sources of risk (uncertainty) with

respect to beliefs about the underlying stochastic process: (i) uncertainty about realized growth or

“prediction errors”, (ii) uncertainty over beliefs about future growth states, and (iii) the covariance

between these two sources of uncertainty. Under learning, there is more uncertainty about source

(i) and less uncertainty about source (ii) (see equations (25) and 26)). Quantitatively, we show in

Appendix A that within an endowment economy, the former modestly increases the risk premium

while the latter depresses it. Importantly, we find that the learning-induced amplification of the

covariance risk (source (iii)) is the crucial channel for understanding the increase in the quantity of

risk.

The analysis in Appendix A also leads to two novel observations. First, the change in the covariance

risk is uniquely magnified in our economy due to the presence of two latent state variables, whose

forecast errors are negatively correlated. That is, the absolute change in the covariance between the

prediction error and the revision of the business-cycle (trend) state becomes even larger, all else equal,

due to the presence of the trend (business-cycle) state (see Equations A56) and (A59). Second, due to

their size, trendy business cycles are the primary contributor to the amplification of the aforementioned

covariance. This implies that total consumption risks are disproportionately driven by business cycle

shocks, as we highlighted in Section 6.2.2.

However, Appendix A illustrates that, under the endowment economy, the risk exposures do not

materially hinge on the information environment: they are always positive, irrespective of the source
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of the shock (equivalently, βz > 0 and βx > 0, with exogenous consumption). Without flexible

investment, which creates a wedge between productivity and dividend fluctuations, the consumption

claim must positively comove with any shock that raises consumption. As a result, we show that the

risk premium under full-information must be positive in the endowment economy – risk exposures and

risk prices for each shock share the same sign. Hence, learning only magnifies (an already) positive

risk premium.

Production economy. In a production economy, the three sources of productivity risk outlined

in the endowment case endogenously propagate into consumption risks. This type of propagation from

productivity to consumption is present in other production-based studies (e.g., long-run productivity

risk creates long-run consumption risk, as in Croce 2014). This propagation changes the perceived

quantity of consumption risks in three ways.

First, learning amplifies uncertainty by inducing a higher correlation between short-term and long-

term risk (corresponding to the aforementioned covariance risk from source (iii)). Second, learning

implies that the risk price of business-cycle shocks is larger than that of trend shocks (see Figure 3(a)

and 3(b)). Third, and perhaps most importantly, the share of the forecast error variance associated

with the trend (business cycle) shocks is amplified (attenuated) under learning (see Section 4.3). Since

a larger fraction of the forecast error variance is believed to be permanent, the household expects more

persistence in future consumption growth. Panel C of Table 4 confirms that expected consumption

growth becomes more auto-correlated under learning, contributing to a larger premium.21This result

is not unique to production: Table Appendix-A.1 shows that under the endowment economy, the

autocorrelation of expected consumption growth is similarly amplified with imperfect-information.

In contrast to the endowment economy, however, rational confusion and production can flip the

21The learning-induced change in the auto-correlation of expected consumption, from 0.990 to 0.999, is at first glance,
rather small. Nonetheless, a small amplification in the persistence of expectations can have a meaningful impact, similar
to the intuition found in the canonical long-run risk model. One way to see this is using Equation (A18) in the Appendix.
Because κ is close to 1, the higher ρx, the closer the denominator to zero: as a result, even a small change in the degree
of persistence can have a large pricing impact, since Ax (in which the risk premium is increasing) is convex in ρx.

To illustrate this numerically, we conduct a back-of-the-envelope computation based on calibration #2 of the en-
dowment economy. Under full-information, the implied persistence of expected consumption growth is 0.990, and the
associated risk premium is 5.7%. If we increase ρx so that the implied persistence of expected consumption is the same
as under learning (i.e., 0.999), we obtain a risk premium of 9.22% under full information, i.e., the equity premium is
amplified considerably (by 3.52%). That is, a small increase in the perceived persistence reflects a large increase in the
risk premium demanded.
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premium from negative under full information to positive with imperfect-information (as shown in Ta-

ble 3 ), since learning also affects risk exposures. In production, risk exposures depend on endogenous

investment. A firm that disinvests has a lower growth option value. If the marginal utility contem-

poraneously drops, the lower valuation creates a hedge that lowers the risk premium. As discussed in

Section 5.2, under our benchmark estimation, trend shocks lower investment under full-information,

yielding βx < 0 and a negative risk premium. Thus, the challenge of reconciling the equity premium un-

der production is substantially distinct from the endowment economy. Because imperfect-information

leads to an increase in investment in response to a trend news shock, βx turns positive under learning,

and so does the trend shock’s contribution to the risk premium.

In sum, production provides an additional channel through which rational confusion affects the

risk premium under learning through its effect on investment (and hence, risk exposures). The risk

premium is not merely amplified due to increased uncertainty, as occurs under endowment, but it also

flips its sign.

6.3.3 Term Structure of Risk

What is the impact of learning on consumption risks at different horizons? In Appendix B, we

study the impact of rational confusion on both the real-yield and equity term structure. In both the

endowment and production economies, if there were only trend shocks, the real yield curve would be

downward-sloping, whereas the equity curve would be upward-sloping. Intuitively, permanent shocks

make long-run cash flows riskier compared to the short-run, and bonds that hedge this long-term

uncertainty are more valuable. On the other hand, these slopes would flip if there were only business-

cycle shocks because long-run cash flows would be relatively less risky.

The effect of learning on the slope of each term structure is a priori ambiguous and depends on two

distinct economic channels. On the one hand, as discussed in Section 6.3.2, agents perceive a larger

share of the forecast error variance to be associated with permanent shocks. Given the behavior of

slopes under full-information, this should decrease (increase) the slope of the real-yield (equity) term

structure, all else equal. On the other hand, learning magnifies the price of risk for business-cycle

shocks but induces the opposite effect for trend shocks, as can be seen in Figure 3a. These changes in

the relative prices of risk imply that learning should induce the opposite effect, making the real-yield
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(equity) term structure less downward (upward) sloping.

In the endowment economy, where consumption is exogenous, the relative prices of risk channel

dominates: the learning-implied yield (equity) term structure is less downward (upward) sloping,

compared to full-information.

In the production environment, where consumption is endogenous, the perceived share of the

forecast error channel dominates, and the effect of learning is the opposite of what we observe in the

endowment economy.

The difference between the two settings arises because learning also impacts the riskiness of future

investment and output claims (in a manner similar to exogenous consumption). In our parametrization,

the quantitative effect of learning on the former is larger. Since endogenous consumption is inversely

related to investment (all else equal), the impact of learning on the term structure of endogenous

consumption claims flips. Because the prices of consumption claims are tightly connected to the

pricing of real yields and dividend claims in equilibrium, the learning-implied yield (equity) term

structure is more downward (upward) sloping. As we discuss in the appendix, this helps the model to

reconcile the equity term structure’s unconditional slope as estimated by Bansal et al. (2021).

6.4 Cyclicality under Imperfect-Information: Model vs Data

We demonstrate that the risk free rate and the price-to-consumption ratio are countercyclical

(procyclical) under full (imperfect) information.

Simulation-Based Impulse-Responses. Figures 3e and 3f show the impact of business-cycle

and trend shocks on the risk free rate. Under full-information, a positive trend (business-cycle) shock

increases (decreases) expected consumption growth (see Figures 2g and 2h), and therefore raises

(drops) the risk free rate given that the IES is greater than one. Consequently, the cyclicality of the

risk free rate is ambiguous when the agent is fully informed. The cyclicality of the price-consumption

ratio is also indeterminate. In equilibrium, the ratio is proportional to the utility-to-consumption ratio,

where the constant of proportionality is (1 − 1
ψ ). Because it is also driven by expected consumption

growth, this valuation ratio increases (decreases) in response to a trend (business-cycle) shock.

Imperfect-information implies that both the risk free rate and the valuation ratio are unambigu-

ously procyclical. The learning-induced trendy business-cycle shock alters how the risk free rate and the
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price-consumption ratio respond to a business-cycle innovation. In particular, both impulse response

functions become positive, as occurs following a true trend shock under perfect information. This

procyclicality is in-line with Figure 2g, showing that with learning, consumption growth expectation

increases with the business-cycle. On the other hand, learning significantly attenuates the responses

of the risk free rate and the price-consumption ratio to a trend shock. These quantities become al-

most acyclical in relation to the permanent productivity shocks, though the impulse responses remain

positive. Given this attenuation, it is evident that prices’ procyclicality is driven almost exclusively

by business-cycle fluctuations in the imperfect-information framework.

VAR-Based Impulse-Responses. We examine the model-implied cyclicality of prices through

the lens of an econometrician who does not observe the underlying productivity components, similar

to the agent in the model. The exercise also allows us to determine the cyclicality of prices for an

uninformed econometrician, given paths simulated from a model with a perfectly informed agent. This

is useful, since the cyclicality of the risk-free rate and the price-consumption ratio from the view of

the perfectly informed agent is ambiguous, as suggested by the former discussion. The methodology

also admits an empirical equivalent.

We simulate a population path from the imperfect-information model letting the underlying business-

cycle and trend shocks fluctuate unrestricted. Let y be the vector of model-implied paths of interest.

We set y = [∆at,∆ct, rf,t, P/Ct]
′, where ∆at is log productivity growth, ∆ct is log consumption

growth, rf,t is the log risk free rate and P/Ct is the price-to-consumption ratio. We then estimate a

vector-auto-regression (VAR) process:

Yt = T0,4×1 + T4×4Yt−1 + ηt,4×1.

We assume that the econometrician knows that ∆at is exogenous to the other variables, and thus,

restricts the first row of T to [1, 0, 0, 0], suggesting that ∆at is only affected by its own lag. We then

compute the impulse-responses from a one standard deviation Choleskly shock to productivity growth

into all variables. We repeat the same exercise using (i) paths obtained from a perfect information

model (keeping the underlying population paths of the shocks εz,t and εx,t unchanged), and (ii) empir-

ical paths. The empirical productivity path is obtained from Basu, Fernald, and Kimball (2006) and

Fernald (2012). Real per-capita consumption growth path is obtained from BEA NIPA tables. We
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proxy for the risk free rate using the yield to maturity on a 3-month T-bill, net of inflation. We proxy

for the price-to-consumption ratio using Shiller’s cyclically adjusted price-to-earning ratio. The results

are shown in Figure 4, along side the empirical impulse-responses. All plotted impulse-responses are

cumulative (i.e., period t shows
∑t

k=0 IRFa,j,k, where IRFa,j,k is the response of variable j to a one-

standard deviation shock to ∆a after k periods). Notably, cumulative impulse responses are similar

to the effect of a productivity shock on the future level of a variable of interest.

A one standard deviation shock to productivity growth shifts productivity immediately to its

new higher steady state level. By construction, this impulse response is identical when based on

imperfect- or full-information model paths. Interestingly however, a positive productivity shock in-

creases consumption to a permanently higher level under imperfect-information, whereas the same

shock increases consumption in the short-run, but steadily drops consumption afterwards. The latter

occurs as business-cycle shocks induce a non-linear mean-reverting effect on equilibrium consump-

tion, and quantitatively dominate trend shocks. The empirical impulse response from productivity

to consumption resembles qualitatively (and also quantitatively) the impulse-response implied by the

imperfect-information model. The response to consumption in the data also settles at a new perma-

nently higher level.

Figures 4c and 4d show that a productivity shock increases the risk-free rate and the price-

consumption ratio when using imperfect-information model paths. This result echoes figures 3e, 3f, 3g,

and 3h, showing that with learning both business-cycle shocks and trend shock raise these variables.

The imperfect-information impulse-response to the risk-free rate also matches its empirical equivalent.

In the data, the price-to-earnings ratio increases following a positive productivity shock. Qualitatively,

this is similar to the imperfect-information model, but the function is more modest than the increase

in the model-implied P/C ratio. An exact quantitative match between the model and the data is not

expected, given that the true P/C ratio is unobserved.

Importantly, using full-information model paths the econometrician infers that the risk-free rate is

countercyclical - in contrast to the data: it steadily drops in response to higher productivity. Business-

cycle shocks are more sizable, and their negative impact on the risk-free rate dominates the positive

impact of trend shocks. Based on full-information paths, the price-consumption ratio is materially
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acyclical to the econometrician - which is empirically inconsistent. Although transitory shocks are

larger, equity prices respond more strongly to permanent shocks, and the two opposite effects of these

shocks offset each other.

6.5 Robustness

Section IA.2 of the Internet Appendix shows that the asset pricing implications of the model (and

in particular, the importance of business cycle shocks relative to trend shocks for the equity premium)

are materially unchanged when the model parameters are perturbed. Importantly, we show that our

results are almost identical when there is no asymmetry between the persistence parameter of the

business-cycle and trend stats. We also show that the imperfect- (full-information) equity premium is

positive (negative), even if the IES is below one. In Internet Appendix IA.3 we obtain similar findings

when we use the parameter values obtained from Kalman filtering of the TFP time-series estimated

by Basu, Fernald, and Kimball (2006) for the TFP process.

7 Learning Implications for Empirical Paths

In what follows, we examine the model-implied beliefs with respect to both the business-cycle

and trend component of productivity, with the aim of providing a new perspective on the empirical

evolution of investment and consumption at particular points of interest (e.g., the Great Recession

and the COVID-19 pandemic.)

We obtain quarterly utilization-adjusted TFP growth data from the San Francisco Fed, following

the methodology of Basu, Fernald, and Kimball (2006) and Fernald (2012), as a proxy for ∆A. We

start the simulation when all variables, including beliefs, are at their steady state value. We then

simulate model-implied paths, ensuring that the model-implied path for At is identical to the empirical

counterpart. This exercise does not necessitate simulating the underlying shocks εz,t and εx,t: the agent

learns about the state of zt and xt exclusively from ∆At.

In Figures 5b and 5a we plot standardized model-implied paths for (log) consumption growth ∆c

and investment growth ∆I against the empirical paths of these variables. Real per-capital consumption

growth (nondurables and services) and investment growth (nonresidential) are obtained from BEA

NIPA Tables. The correlation between consumption growth in the data and in the model is 0.45,
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with a similar correlation for investment growth. The fluctuations in the model-implied paths of these

variables show a gradual attenuation after the mid-1980s, consistent with Stock and Watson (2002).

Figures 5c and 5d show the evolution of beliefs about the trend component x̂t|t and the business-

cycle component ẑt|t, respectively. The path of x̂ shows greater persistence, but smaller volatility in

comparison to ẑ, consistent with the model’s estimated parameters.

Several studies have pointed out that the the recovery from the Great Recession seemed slower

than expected. One way of illustrating this is found in Figure 6. The black line shows the evolution of

(log) real investment before and after the great recession, and the red dashed line shows the constant

(log-linear) trend which best fits investment data prior to 2007Q4. The dynamics of investment are

puzzling under the belief that the crisis was caused by a (sequence of) negative business-cycle shock(s),

εz < 0. To see this, note that the dashed blue line depicts the hypothetical path of investment

obtained from the full-information model, when productivity is perturbed by a sequence of negative

but transitory business-cycle shocks that match the observed drop in investment during the crisis.

Under this scenario, and in the absence of further shocks, investment should have converged to the

pre-crisis log-linear trend about two years after the trough. In contrast, post 2009Q2 investment rises

(almost) in parallel to the constant trend red line, and does not converge to its pre-crisis trend.

While the existing literature has provided compelling theories for the sluggish path of investment

(see, e.g., Reinhart and Rogoff 2014; Kozlowski, Veldkamp, and Venkateswaran 2017), we believe that

our model can provides a complementary perspective. Specifically, while the recovery dynamics are

puzzling ex-ante to an agent who believes that most observed fluctuations are driven by business-cycle

fluctuations, from the lens of our framework, the recovery dynamics are ex-post consistent with the

belief that the Great Recession involved primarily negative trend shocks. Consistent with a prior belief

that observed fluctuations mostly operate at the business-cycle frequency, we find that as investment

fell from 2007Q4 to 2009Q2, the agent ascribed a larger likelihood that the underlying productivity

shocks are temporary: in Figure 5d, ẑ falls precipitously during this period. However, by the end

of 2009, the agent’s belief, ẑ, recovered to a near zero value. In contrast, agent’s belief about the

trend, x̂, shows a small recovery starting at 2009Q1 but it stalls in 2011Q1, remaining firmly lodged

in negative territory until the pandemic. The full recovery of ẑ, alongside the post-2011 dynamics of
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x̂, are consistent with a posterior belief that the recession was driven (to a large extent) by permanent

shifts in the stochastic trend of productivity.22

These dynamics stand in contrast to the evolution of x̂ in response to other recessions in our

sample. In Figure 5c, we denote NBER-dated recessions with the shaded regions. We note that, even

though there were secular trends in x̂, after each recession beliefs about the trend component had

largely rebounded to their pre-recession level. As a result, the accompanying recovery was (relatively)

rapid, consistent with the belief that these were largely driven by transitory shocks. A salient example

is the latest COVID crisis. Figures 5d and 5c suggest that the pandemic-induced recession was mostly

a business-cycle phenomenon. While initially beliefs about both the business-cycle state and the trend

state declined, ẑ fells substantially more than x̂, and both beliefs quickly regained their pre-crisis level,

consistent with a V-shaped recovery.

8 Conclusion

We study a framework in which households and firms understand the parameters of the underlying

data-generating process, but must form beliefs about two types of shocks, trend (permanent) and

business-cycle (transitory), by conditioning only on aggregate productivity. As a result, agents are

never fully sure which shock is driving growth, which leads to rational confusion – each shock partially

inherits the features of its counterpart. Consequently, the implication of learning depends not only

upon the nature of each shock in isolation, but also is crucially determined by their interaction.

We show that rational confusion plays a crucial role in generating a sizable & positive equity

premium, a sufficiently low risk-free rate, and pro-cyclical valuation ratios and investment growth,

consistent with the data. The interaction between beliefs about business-cycle and trend shocks

implies that a larger fraction of agents’ uncertainty is perceived to arise from permanent shocks,

amplifying the risk premium relative to full information. Moreover, business-cycle shocks play a key

22Based on the the dynamics of x̂, the model implies that the belief about the underlying shock which drove the Great
Recession changed around mid-2011. Interestingly, during this period there is also a notable change in the growth rate
of investment. Figure 6 shows the best linear fit of investment pre- (green line) and post- (yellow line) 2012. Investment
seems to have grown at a faster rate after the recession but before 2012, while the belief about the permanent component
of productivity was recovering, but grows at a slower rate (in comparison to both the green and the red line) post-2012.
Therefore, consistent with the implications of our framework, the altered belief about productivity dynamics directly
translated into a change in equilibrium investment.
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role in explaining asset prices with learning – quantitatively they are the primary source of endogenous

long-run consumption risk, via “trendy business-cycles”. Our mechanism provides a possible bridge

between the importance of (perceived) permanent shocks to the SDF (e.g., Alvarez and Jermann 2005)

versus the dominance of transitory shocks in the data (e.g., King et al. 1991; Cochrane 1988).

We believe that further consideration of the learning problem presented in this paper may be a

fruitful approach in other areas including models of endogenous growth, capital structure, and the

impact of differences in cash-flow duration for cross-sectional asset pricing.
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Tables and Figures

Table 1: Model parameters

Parameter Value Source

Production:

α 0.36 Capital share of output

δ 0.021 Annual depreciation rate from BEA (0.021× 4 = 8.4%)

ζ 7.7 Consumption growth’s volatility to output growth’s volatility,

consistent with Kaltenbrunner and Lochstoer (2010)

Preferences:

γ 10 Bansal and Yaron (2004)

ψ 1.5 Bansal and Yaron (2004)

β 0.991 Estimated

[0.9894, 0.9920]

Technology:

µ 0.0049 Estimated

[0.0018, 0.0080]

σz 0.0168 Estimated

[0.0153, 0.0184]

ρz 0.8783 Estimated

[0.8080, 0.9253]

σx 8.41·10−4 Estimated

[0.0005, 0.0012]

ρx 0.9962 Estimated

[0.9884, 0.9988]

The table reports the model parameters in the benchmark case. The source indicates the study from which each

parameter is obtained or the empirical statistic that it targets. The parameters whose source is “Estimated” are obtained

via SMM, and brackets show 90% confidence intervals.
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Table 2: Macroeconomic Moments: Model versus Data

Model: Model:

Data Learning Full Information

Panel A: Unconditional growth moments.

Consumption growth:

mean 1.93 [1.59, 2.28] 1.96 [-0.42, 5.02] 1.96 [-0.52, 5.07]

stdev 1.27 [1.07, 1.57] 1.51 [1.19, 2.24] 1.38 [1.00, 2.16]

AC(1) 0.52 [0.30, 0.74] 0.44 [0.08, 0.75] 0.54 [0.10, 0.83]

Output growth:

mean 1.94 [1.41, 2.48] 1.96 [-0.66, 5.19] 1.96 [-0.73, 5.21]

stdev 1.98 [1.67, 2.44] 1.98 [1.61, 2.64] 2.00 [1.62, 2.69]

AC(1) 0.30 [0.08, 0.52] 0.33 [0.01, 0.65] 0.34 [0.02, 0.66]

Investment growth:

mean 3.61 [2.00, 5.22] 1.91 [-2.08, 5.89] 1.91 [-1.82, 5.76]

stdev 5.96 [5.02, 7.34] 4.02 [3.20, 5.09] 4.68 [3.70, 5.64]

AC(1) 0.29 [0.11, 0.48] 0.21 [-0.06, 0.49] 0.17 [-0.07, 0.43]

Panel B: Variance ratios.

Consumption growth:

VR(2) 1.52 [1.26, 1.79] 1.43 [1.07, 1.75] 1.53 [1.10, 1.81]

VR(3) 1.80 [1.41, 2.20] 1.74 [1.03, 2.40] 1.94 [1.13, 2.55]

Output growth:

VR(2) 1.31 [1.04, 1.57] 1.32 [1.01, 1.65] 1.34 [1.01, 1.66]

VR(3) 1.33 [0.94, 1.73] 1.52 [0.96, 2.21] 1.54 [0.97, 2.23]

The table shows model-implied moments for annual consumption growth, output growth and investment growth against

empirical counterparts. Panel A shows unconditional growth moments and Panel B shows variance ratio moments. The

model-implied moments are computed under learning and under full-information.
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Table 3: Prices Moments: Model versus Data

Model: Model:

Data Learning Full Information

E[Rm −Rf ](%) 4.80 [0.18, 9.42] 2.62 [1.26, 3.70] -0.54 [-1.61, 0.23]

SR(Rm −Rf ) 0.31 [0.06, 0.57] 0.55 [0.25, 0.79] -0.11 [-0.32, 0.05]

E[Rf ](%) 0.69 [0.23, 1.15] 0.67 [-0.73, 2.41] 2.20 [0.60, 4.21]

σ[Rf ](%) 1.71 [1.44, 2.10] 0.65 [0.28, 1.22] 0.72 [0.37, 1.32]

The table shows model-implied annual moments for the market excess return Rm−Rf and the risk free rate Rf , against

empirical counterparts. SR denotes Sharpe ratio. σ denotes standard deviation. The model-implied moments are

computed under learning and under full-information.

Table 4: Endogenous Long-Run Consumption Risk

Full-Information Imperfect-Information

Panel A. Contribution to equity premium

x 144.77% 0.33%

z -44.77% 99.67%

Panel B. Innovations’ correlation

corr(ηt, εx) 0.51 0.06

corr(ηt, εz) -0.83 0.78

Panel C. AR(1) of expected consumption growth

ρ 0.990 0.999

The table shows the properties of endogenous long run consumption risk within the full-information and imperfect-

information-models. For each model, we simulate a population path of the exogenous shocks εz and εx and use these to

obtain a sample of expected consumption growth path, et = Et[∆ct+1], as implied by the model’s solution. We then fit

e into an AR(1) process: et+1 = const+ ρet + ηt, where ηt is expected consumption growth shock. In Panel A we report

the fraction of Eq. (33). In Panel B we report how the shocks ηt correlate with contemporaneous business-cycle shocks

and trend shocks. In Panel C we report the population value of ρ.
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Figure 1: Macroeconomic Dynamics Under Learning: Risk Neutrality

Impulse-Responses: Transitory Shock (εz) Impulse-Responses: Permanent Shock (εx)
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The figure shows impulse responses of transitory and permanent shocks to macroeconomic variables under risk neutrality.

The solid blue line shows impulse-responses under full-information. The dashed red line shows impulse-responses under

learning. Horizontal axes represent quarters.
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Figure 2: Macroeconomic Dynamics Under Learning: Risk Aversion

Impulse-Responses: Transitory Shock (εz) Impulse-Responses: Permanent Shock (εx)
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The figure shows impulse responses of transitory and permanent shocks to macroeconomic variables under risk aversion.

The solid blue line shows impulse-responses under full-information. The dashed red line shows impulse-responses under

learning. Horizontal axes represent quarters.
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Figure 3: Price Dynamics Under Learning

Impulse-Responses: Transitory Shock (εz) Impulse-Responses: Permanent Shock (εx)
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The figure shows impulse responses of transitory and permanent shocks to financial (prices) variables under risk aversion.

The solid blue line shows impulse-responses under full-information. The dashed red line shows impulse-responses under

learning. Horizontal axes represent quarters.
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Figure 4: Cumulative Impulse-Responses from a VAR(1) specification
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The figure shows impulse responses of one standard deviation Cholesky shock to productivity to consumption growth, the

risk free rate, and price-consumption ratio. The impulse-responses are computed by estimating a VAR(1) that includes

productivity growth, consumption growth, rf , and P/C in that order. The plotted impulse response are cumulative

(i.e., period t shows
∑t
k=0 IRFa,j,k, where IRFa,j,k is the response of variable j to a one-standard deviation shock to

∆a after k periods). The solid blue line shows impulse-responses under full-information. The dashed red line shows

impulse-responses under learning. The dotted black line shows the empirical counterpart. All impulse-response functions

are standardized by the respective standard deviations of the vertical-axis variables. Horizontal axes represent quarters.
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Figure 5: Model-Implied Paths Given Empirical Productivity Growth Rates
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Panels (a) and (b) show the standardized model-implied paths (in blue) of consumption growth ∆c and investment

growth ∆I given the empirical path of productivity growth rates from 1947-2021, as constructed by Fernald (2012).

The corresponding empirical paths are also shown (in black). Panels (c) and (d) shows the model-implied belief for the

underlying permanent productivity growth state x̂ and the belief for the underlying transitory productivity state ẑ given

the empirical path of productivity growth rates.
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Figure 6: Investment Around The Great Recession

The black line shows the time series of log(I), where I is the real log level of non-residential investment from NIPA.

The red dashed line shows a log-linear trend fitted for the period of 2003Q1-2007Q4. The blue dashed line shows the

expected path of I, assuming the drop in investment between 2007Q4-2009Q2 was generated by a sequence of negative

business-cycle shocks. The green (yellow) line shows the linear fit for log(I) between 2009Q2-2012Q1 (2012Q2-2020Q1).
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Appendix A Endowment Economy

Appendix-A.1 Model Setup and Solution

Specification. In this section we examine the role of imperfect information in an endowment economy

with both trend and business-cycle shocks. Specifically, we assume that

∆ct+1 = µ+ xt+1 + zt+1 − zt (A1)

xt+1 = ρxxt + σxεx,t+1 (A2)

zt+1 = ρzzt + σzεz,t+1 (A3)

where εx,t+1, εz,t+1 ∼ N (0, 1) are independent of one another and over time. This implies that de-

meaned consumption growth can be written as

∆ct+1 − µ = ρxxt + (ρz − 1) zt + σxεx,t+1 + σzεz,t+1, (A4)

so that agents’ forecast of consumption growth in the next period is given by

∆ĉt+1|t = µ+ ρxx̂t|t + (ρz − 1) ẑt|t. (A5)

Under full information, agents observe the realization of each shock independently and update

utilizing equations (A2) and (A3), i.e., x̂t|t = xt and ẑt|t = zt. Under imperfect information, however,

agents update their beliefs utilizing the forecast error,

vt = ct − ĉt|t−1 vt ∼ N
(
0, σ2

v

)
. (A6)

Specifically, with learning,

x̂t|t = ρxx̂t−1|t−1 + gxvt (A7)

ẑt|t = ρz ẑt−1|t−1 + gzvt. (A8)

The variance, σ2
v , as well as the gains, gx and gz are pinned down by the steady state solution of the

Ricatti equation, which is the same as in our benchmark analysis, replacing only ∆at with ∆ct.

Given the assumption of Epstein and Zin (1991) preferences, we can write the log-SDF as

mt+1 = θ log δ − θ
ψ∆ct+1 + (θ − 1) rt+1, (A9)

and, letting rc,t+1 denote the log return on the consumption claim, it must be the case that

Et [Mt+1Rc,t+1] = E
[
exp

(
θ log δ − θ

ψ∆ct+1 + θrc,t+1

)]
= 1. (A10)
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Price-Consumption Ratio. We conjecture that the endogenous log price-consumption follows

PCt = A0 +Axxt|t +Azzt|t, (A11)

and then use a Campbell-Shiller approximation of the log return on the consumption claim

rc,t+1 = κ0 + κ1PCt+1 − PCt + ∆ct+1, (A12)

where κ0 and κ1 are log-linearization parameters23. Under full information, this yields

rc,t+1 = κ0 +A0 (κ1 − 1) +Axxt|t (κ1ρx − 1) +Azzt|t (κ1ρz − 1) (A13)

+ ∆ct+1 + κ1Axσxεx,t+1 + κ1Azσzεz,t+1, (A14)

while under imperfect information this yields

rc,t+1 = κ0 +A0 (κ1 − 1) +Axx̂t|t (κ1ρx − 1) +Az ẑt|t (κ1ρz − 1) (A15)

+ ∆ct+1 + κ1 (Axgx +Azgz) vt+1. (A16)

Since Et [Mt+1Rc,t+1] is always equal to one, it must be the case that the coefficients on xt|t and zt|t

are zero (since both are known at date-t and are time-varying). Thus, under both full and imperfect

information, and given the coefficients on xt|t, it must be the case that(
θ − θ

ψ

)
ρx + θ (Ax (κ1ρx − 1)) = 0 (A17)

which implies that

Ax =
ρx

(
1− 1

ψ

)
1− κ1ρx

, (A18)

while given the coefficients on zt|t, it must be the case that(
θ − θ

ψ

)
(ρz − 1) + θ (Ay (κ1ρz − 1)) = 0 (A19)

which implies that

Az =
(ρz − 1)

(
1− 1

ψ

)
1− κ1ρz

. (A20)

Note that since ψ > 1, 1− 1
ψ > 0, and consequently, Ax > 0 while Az < 0, consistent with the notion

that εx (εz) is a positive (negative) long-run risk shock.

Risk Premium. Next, we solve for the prices of risk for each shock in the economy. Under full

23The constant κ1 is positive and close to 1, under both full- and imperfect- information, such that κF1 ≈ κL1 . For
notational ease, we omit the superscripts and work with a constant κ1 in both environments. We confirm in the next
subsection that in our first (second) calibration of the model, the difference is just 0.09% (0.04%).
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information,

mt+1 − Et [mt+1] = − (γ + (1− θ)κ1Ax)σxεx,t+1 − (γ + (1− θ)κ1Az)σzεz,t+1 (A21)

≡ −λxσxεx,t+1 − λzσzεz,t+1. (A22)

Under imperfect information, it can be shown that

mt+1 − Et [mt+1] = − (γ + (1− θ)κ1 (Axgx +Azgz)) vt+1 (A23)

≡ −λvvt+1. (A24)

Note that under a preference for early resolution of uncertainty, λx, λz, λv > 0.24 Equipped with the

prices of risk, we can solve for the conditional risk premium. Utilizing log-normality, we know that

Et [rc,t+1 − rf,t] = −Covt (mt+1 − Et [mt+1] , rc,t+1 − Et [rc,t+1])− 1
2Vart [rc,t+1] . (A25)

Under full information, the innovations to the return on the consumption claim are

rc,t+1 − Et [rc,t+1] = (1 + κ1Ax)σxεx,t+1 + (1 + κ1Az)σzεz,t+1 (A26)

so that the risk premium is

λx (1 + κ1Ax)σ2
x + λz (1 + κ1Az)σ

2
z − 1

2

[
(1 + κ1Ax)2 σ2

x + (1 + κ1Az)
2 σ2

z

]
(A27)

Under imperfect information, the innovations to the return on consumption are

rc,t+1 − Et [rc,t+1] = (1 + κ1 (Axgx +Azgz)) vt+1 (A28)

and so we can write the risk premium under learning as

λv (1 + κ1 (Axgx +Azgz))σ
2
v − 1

2

[
(1 + κ1 (Axgx +Azgz))

2 σ2
v

]
. (A29)

In both information environments, the risk premium is positive.25

Risk-free rate. Under both full and imperfect information,

Et [mt+1] = mo − ρx
ψ x̂t|t −

ρz−1
ψ ẑt|t, (A30)

where m0 = θ log δ−γµ− (θ − 1) log κ1. Then, since rf,t = Et [mt+1]− 1
2Vart [mt+1], the unconditional

24A preference for early resolution of uncertainty implies that γ > 1
ψ

and so 1− θ > 0. Since Ax > 0, this implies that
λx > 0. Since κ1 < 1, and Az < 0

λz > γ + (1− θ)Az

> γ + (1− θ)
(ρz−1)

(
1− 1

ψ

)
1−ρz = 1

ψ
> 0

Moreover, since gz < 1, this implies that γ + (1− θ)gzAz > 0 and so λv > 0 as well.
25Since Ax > 0, both 1 + κ1Ax and κ1Axgx > 0 and since κ1 < 1, 1 + κ1Az >

1
ψ
> 0 which also implies that

1 + κ1Azgz > 0. If γ > 1, it is straightforward to show that the Jensen term is sufficiently small.
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risk-free rate under full information is

E [rf,t] = mF
0 − 1

2

(
λ2
xσ

2
x + λ2

zσ
2
z

)
, (A31)

where mF
0 is the constant under full information while the variance is

Var [rf,t] =
(
ρx
ψ

)2
(

σ2
x

1− ρ2
x

)
+
(
ρz−1
ψ

)2
(

σ2
z

1− ρ2
z

)
. (A32)

Similarly, with learning, the unconditional risk-free rate can be written as

E [rf,t] = mL
0 − 1

2λ
2
vσ

2
v (A33)

where mL
0 is the constant under learning, while the variance is

Var [rf,t] =
(
ρx
ψ

)2
(
g2
xσ

2
v

1− ρ2
x

)
+
(
ρz−1
ψ

)2
(
g2
zσ

2
v

1− ρ2
z

)
. (A34)

Appendix-A.2 Risk Premium and Information: Qualitative Analysis

To shed light on the difference in the risk premium under the two information environments in an

endowment economy, it is instructive to break the conditional covariance

−Covt (mt+1 − Et [mt+1] , rc,t+1 − Et [rc,t+1]) ,

into three pieces. Each piece captures a unique source of uncertainty driven by households’ beliefs.

Specifically, we isolate compensation for three sources of risk:

(i) Shocks to realized consumption (i.e., prediction errors);

(ii) Revisions to beliefs about the state variables underpinning future consumption;

(iii) The covariance between these two sources of uncertainty. The first and the third sources amplify

the risk premium under learning, while the second attenuates it.

As we describe below, the third component (i.e., the covariance), and its associated compensation, are

uniquely amplified in our setup due to the negative endogenous association between revisions in trend

and business-cycle beliefs. We elaborate on these components in what follows.

First, there is the uncertainty introduced by shocks to realized consumption growth, ∆ct+1 −

Et∆ct+1. Under full information, the compensation for this risk is

γ
(
σ2
x + σ2

z

)
(A35)

while under learning it is given by

γσ2
v . (A36)
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Under imperfect information, households face uncertainty about the true state of the world (i.e.,

V
[
xt − x̂t|t

]
and V

[
zt − ẑt|t

]
are non-zero). As a result, the variance of ∆ct+1 − Et[ct+1] (i.e., the

prediction error) under learning exceeds the equivalent variance under full information, which is driven

only by the realization of the underlying shocks. To see this formally, note that we can write

vt+1 = ρx
(
xt − x̂t|t

)
+ (ρz − 1)

(
zt − ẑt|t

)
+ σxεx,t+1 + σzεz,t+1. (A37)

As long as ρx 6= 0 and ρz 6= 1, i.e., as long as the shocks to consumption growth are persistent, then

it must be that σ2
v > σ2

x + σ2
z . Consequently, this component of the risk premium is larger under

learning.

Second, there is the uncertainty induced by direct shocks to perceived expected future consumption

growth, i.e., revisions of beliefs about the state variables. The premium demanded for these shocks

under full information is:

(1− θ)κ2
1

[
A2
xσ

2
x +A2

zσ
2
z

]
(A38)

while under imperfect information this is

(1− θ)κ2
1

[
A2
x

(
g2
xσ

2
v

)
+A2

z

(
g2
zσ

2
v

)
+ 2AxgxAzgzσ

2
v

]
. (A39)

In order to compare the compensation demanded across the two information environments, note

that the state variables that determine expected consumption growth are given by the vector σt =

[x̂t|t, ẑt|t, ẑt−1|t]. Let P = V ar(σ̂t) be the steady-state variance-covariance matrix of σ̂, obtained from

the fixed-point of the Riccati equation. We denote the elements of P by:

P ≡


p11 p12 p13

p12 p22 p23

p13 p23 p33

 . (A40)

Note that because gx = p11+p12−p13
σ2
v

, we obtain

g2
xσ

2
v =

(p11 + p12 − p13)2

σ2
v

. (A41)

From the Ricatti equations, we know that

p11 = ρ2
xp11 − ρ2

x

(p11 + p12 − p13)2

σ2
v

+ σ2
x. (A42)

Isolating (p11+p12−p13)2

σ2
v

and substituting into (A41) yields

g2
xσ

2
v =

σ2
x +

(
ρ2
x − 1

)
p11

ρ2
x

(A43)
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= σ2
x +

ρ2
x − 1

ρ2
x

(
p11 − σ2

x

)
(A44)

Finally, since

p11 = V
[
xt+1 − x̂t+1|t

]
= ρ2

xV
[
xt − x̂t|t

]
+ σ2

x, (A45)

it is always the case that p11 > σ2
x. But this implies that g2

xσ
2
v < σ2

x as long as ρx < 1. Following

similar steps with respect to p22 yields the analogous result for the business-cycle shock, g2
zσ

2
v < σ2

z .

Since Ax > 0 > Az, these inequalities, in combination with (A38) and (A39), imply that the risk

premium required to compensate agents for the variance over their beliefs about the future (long-

run) will always be larger under full information. Under imperfect information, agents update less

aggressively in response to the prediction error since they recognize that some of this prediction error

is due to mistaken beliefs about earlier shocks to the underlying state variables.

The third part of the risk premium is attributed to the covariance between state-space belief

revisions and the shocks to realized consumption growth. Households demand compensation for this

covariance because both contemporaneous shocks to consumption, as well as the revision in their

beliefs, affect both the SDF and the return on the consumption claim. Under full information this

compensation is

(1− θ + γ)
(
κ1Axσ

2
x + κ1Azσ

2
z

)
(A46)

while under learning the analogous term is

(1− θ + γ)
(
κ1Axgxσ

2
v + κ1Azgzσ

2
v

)
. (A47)

To facilitate the comparison between (A46) and (A47), we first establish that p12, p13 ≤ 0 in our

setting. To understand why, recall that these terms capture the covariance of agents’ forecast errors

between the underlying state variables. For example, p12 is the covariance between agents’ forecast

errors with respect to xt+1 and zt+1. Since the underlying shocks to each process are independent

(i.e., εx,t+1 and εz,t+1 are orthogonal), the sign of this covariance depends only on the comovement

between the time-t prediction errors, xt − x̂t|t and zt − ẑt|t, which are negatively correlated. Ignoring

the shocks εx,t+1 and εz,t+1 (which affect neither p12 nor p13), if

∆ct+1 −∆ĉt+1 > 0 =⇒ (A48)

xt > x̂t|t and/or zt < ẑt|t. (A49)

59



That is, if consumption growth is higher than expected it could be due to under-estimation of the

trend state or over-estimation of the business-cycle state. Similarly, lower than expected consumption

growth results from over-estimation of xt or under-estimation of zt, i.e.,

∆ct+1 −∆ĉt+1 < 0 =⇒ (A50)

xt < x̂t|t and/or zt > ẑt|t. (A51)

To see the negative covariation formally, note that the Ricatti equations imply that

p12 = ρxρzp12 − ρxρzgxgzσ2
v (A52)

=
−ρxρzgxgzσ2

v

1− ρxρz
≤ 0, (A53)

while

p13 = ρxp12 − ρxgxgzσ2
v ≤ 0 (A54)

where the inequalities are strict as long as ρx, ρz 6= 0.

Given p12, p13 ≤ 0, we can establish that gxσ
2
v > σ2

x while gzσ
2
v < σ2

z . The covariance between the

prediction error to current consumption and the revision in beliefs regarding the trend state is given

by

gxσ
2
v = p11 + p12 − p13 (A55)

= p11 + (ρz − 1) p13. (A56)

Since ρz < 1 and p13 ≤ 0, this implies that gxσ
2
v > p11 > σ2

x. In contrast,

gzσ
2
v = p22 + p12 − p23 (A57)

= ρ2
zp33 + σ2

z + p12 − ρzp33 (A58)

= σ2
z + ρzp33 (ρz − 1) + p12 (A59)

Since p12 ≤ 0 and the variance of any prediction error is positive, i.e., p33 > 0, this implies that

gzσ
2
v < σ2

z .

Intuitively, with respect to the trend shock, the covariance is higher than σ2
x for two reasons. The

first reason depends on rational learning. A positive (negative) prediction error implies that the belief

about the trend state, x̂t|t, was too low (high) which leads to a larger upward (downward) revision in

beliefs about the trend state than under full information. This channel would arise even if the model

featured only trend shocks (with, e.g., i.i.d. noise.) The second reason depends on the interaction
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between beliefs about the trend versus the business cycle state, and hence is unique to our setup. A

positive (negative) prediction error implies that past beliefs about the business-cycle state were too

high (low) as well, which given the negative comovement, suggests the beliefs about the trend were

deflated (inflated) above and beyond what would have been perceived if only the one state variable

existed. Thus, the covariance is amplified, all else equal, through the (ρz − 1) p13 term found in (A56).

In contrast, with respect to the business-cycle shock, the covariance is lower than σ2
z since a positive

prediction (negative) prediction error implies that the belief about the business-cycle state, ẑt|t, was

too high (low) and so there is a smaller upward revision in beliefs about the business-cycle relative to

full information. This revision is further deflated through the interaction with the trend shock, and

there is further attenuation in the covariance term (p12 < 0 in (A59)).

These observations, in combination with the fact that Ax > 0 > Az and equations (A46) and (A47),

imply that households demand more compensation for this type of “learning” risk under imperfect

information than under full information. More precisely, with respect to the trend (business-cycle)

shock, the covariance is higher (lower) under learning; given that the return on consumption’s exposure

to long-run consumption shocks induced by trend (business-cycle) shocks is positive (negative), the

compensation for this source of risk is more positive (less negative), which operates to raise the total

risk premium.

Appendix-A.3 Comparing Full to Imperfect Information: Quantitative Analysis

Table Appendix-A.1 summarizes the key model-implied asset-pricing moments from two calibra-

tions of the exogenous consumption process.26 In the first, we adopt the estimated parameters underly-

ing the productivity process found in our baseline analysis, i.e., our estimated process for productivity,

At becomes our estimated process for consumption, Ct. In the second, we simulate a population path

of the endogenous consumption process from the production model and then estimate the parameters

of the Kalman filter using MLE.

There are three key observations. (1) Learning amplifies the risk premium.27 (2) Learning reduces

26The parameters underlying household preferences are the same as in the main text.
27While the risk premium of the consumption claim is substantially higher than the estimated equity risk premium,

both calibrations’ results are in line with the risk premium of a consumption claim in our production economy, as shown
in Section IA.1.
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Table Appendix-A.1: Endowment economy: full information versus learning

Calibration 1 Calibration 2
∆c = ∆a ∆c = Kalman(endogenous consumption)

Parameters.
ρz 0.8783 0.8804
σz 0.0168 0.0074
ρx 0.9962 0.9978
σx 0.00084 0.00054

Consumption moments.
E[∆c] (%) 2.11 2.11
σ[∆c] (%) 2.99 1.54
AC1[∆c] 0.27 0.46
V R2[∆c] 1.28 1.44
V R3[∆c] 1.40 1.80

Model solution.
Full information Learning Full information Learning

E[Rec] (%) 8.50 13.86 5.70 7.69
Contribution z (%) 1.85 99.66 0.47 99.32
Corr(ηt, εz) -0.91 -0.45 -0.84 0.87
ρη 0.971 0.999 0.990 0.999
E[Rf ] 1.56 -2.50 2.27 0.73
σ[Rf ] 1.44 0.85 0.82 0.62

The table shows model-implied moments from an endowment economy, in which the business-cycle and trend parameters
of consumption are: (1) identical to those of aggregate productivity in the production model, or (2) obtained by Kalman
filtering the endogenous consumption process from the simulated production economy. The model-implied moments are
computed under learning and under full-information.

both the risk-free rate and its volatility, relative to the full-information benchmark. (3) Business-cycle

shocks explain little of the risk premium under full information but are the primary driver under

imperfect information.

Risk-premium and relative contribution. To understand the quantitative importance of

sources (i)–(iii) (as described in subsection Appendix-A.2) for this amplification, we consider the frac-

tion of the risk premium amplification (i.e., E [Rec|Learning]−E [Rec|Full Info]) which is attributable to

each channel. Under the second calibration, the fraction of the risk premium amplification explained
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by shocks to realized consumption growth (i.e., channel (i)) is only 3%.28 In contrast, the reduced

variation in beliefs about the underlying state variables (i.e., channel (ii)) reduces the relative risk

premium. Consequently, its relative contribution to the risk premium amplification is negative, ac-

counting for approximately -47%. Thus, the key amplification of the risk premium under learning

is due to channel (iii), the covariance between the current shock and households’ beliefs about the

future. This channel quantitatively dominates channel (ii), and in our calibration, explains just over

144% of the risk premium difference. Notably, channel (iii) is amplified by the interplay between trend

and business-cycle beliefs, and consequently, is economically distinct from other amplification channels

discussed in the literature.

Moreover, this breakdown explains why business-cycle shocks explain so little of the risk premium

under full information while driving most of the risk under learning. Positive consumption growth

shocks driven by εz,t (εx,t) reduce (increase) future growth which offsets (amplifies) their contempo-

raneous impact on the risk premium. Consequently, |Az| << |Ax|, and under full information the

relative contribution of business-cycle shocks is less than 1%.29 Under imperfect information, the fore-

cast error variance is driven primarily by business-cycle shocks and their associated state uncertainty:

σ2
z+(ρz−1)2p22

σ2
v

is greater than 90%.

We note that, in particular, trendy business cycle shocks, gxσ
2
z , play the largest role in determining

the risk premium given the outsized importance of the covariance term in explaining the relative risk

premium under learning. To see this, note that under learning, the covariance with respect to the

trend shock can be written as gxσ
2
v = gx(σ2

z + σ2
x + ρ2

xp11 + (ρz − 1)2p22). Since σx < p11 << σz,

and since ρz is sufficiently high, the trendy business cycle component gxσ
2
z dominates quantitatively.

In summary, trendy business-cycles amplify the covariance risk, which in turn, amplifies the total

compensation for perceived expected consumption growth fluctuations (that is, long-run risk).30

28The relative contribution of each component is similar under both calibrations and so we focus on the process which
more closely matches the baseline production economy here.

29To be more precise, under either calibration, the price of risk for each shock (λxσx and λzσz in the notation of
equation (A22)) is positive under full information. However, because transitory shocks are expected to mean-revert and
given households’ preference for early-resolution of uncertainty, Az < 0. Thus, even though σz >> σx, the price of risk
for trend shocks is an order of magnitude larger.

30Just as a fraction of business-cycle shocks are perceived to be trend shocks (i.e., trendy business-cycles), a fraction
of the trend shocks are perceived to be part of the business-cycle (i.e., transitory trends). Recall that the covariance
between the prediction error and the beliefs about the business-cycle is attenuated under learning, in part due to the
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Risk-free rate. While we cannot show analytically that the risk-free rate is always lower under

learning in the endowment economy (similar to the risk premium, there are opposite forces at work),

our numerical analysis suggests that this is the case under both calibrations. In contrast, it is always

the case that the variance of the risk-free rate is lower under learning. This stems immediately from

Equation (A34) in conjunction with g2
xσ

2
v < σ2

x while g2
zσ

2
v < σ2

z , as previously shown. Intuitively,

because agents revise their beliefs about the current state variables less aggressively, the variance of

the equilibrium risk-free rate is lower.

Source of long-run risk. We conclude by discussing the contribution of business cycle shocks to

long-run consumption risk. As in the corresponding analysis of the production economy (Section 6.3),

we estimate an AR(1) process to a simulated path of expected consumption. The residuals, denoted by

ηt, are the shocks to expected consumption growth. As shown in Table Appendix-A.1, business cycle

shocks are negatively correlated with shocks to expected consumption growth under full information:

positive (negative) realizations of εz,t are associated with lower (higher) growth in the future.

The impact under learning, however, differs across the two calibrations due to the differential

response of households to forecast errors. Specifically, the change in household beliefs is given by

Et [∆ct+1]− Et−1 [∆ct+1] = [ρxgx + (ρz − 1) gz] vt. (A60)

This suggests that the sign of corr(ηt, εz,t) should be driven by the sign of ρxgx + (ρz − 1) gz. In

the second calibration, ρxgx + (ρz − 1) gz > 0. Positive realizations of the business-cycle shock are

therefore associated with an increase in expected consumption growth and the estimated correlation

is positive. In the first calibration, this is not the case, despite featuring the same parameters as

the productivity process in our benchmark model. While the persistence parameters (ρz and ρx) are

nearly identical, the gains are not. gx is smaller (0.045 versus 0.067) while gz is larger (0.425 versus

0.347). This is driven by the relative increase in the variance of the business-cycle shocks in the first

calibration: more of the forecast error is associated with εz,t relative to the second calibration. As a

result, positive forecast errors decrease expectations of consumption growth in this calibration, and

business-cycle shocks are negatively-correlated with shocks to expected consumption growth, even

under learning - in contrast to the equivalent result under production.

interaction with the trend shock. Since this covariance bears a negative risk premium, one could argue that transitory
trends also play a role in the risk premium amplification, albeit a modest one.
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Appendix B Term Structure

In this section we compare the term structure of real interest rates and of risk premia on dividend

strips under a model with perfect information versus a model with learning. We repeat this exercise

twice: once for the endowment economy described in Appendix A, and another for our benchmark

production economy described in Section 3. Learning tilts the slope of the term structure compared

to full information, but its effect is ex-ante ambiguous and depends upon two opposing factors: the

share of the forecast error variance attributed to each shock and the relative prices of risk. Moreover,

the relative strength of these factors depends upon whether the consumption process is endogenous

or exogenous (i.e., the flexibility of investment).

In the endowment setting (a setting with implicitly inflexible investment), imperfect-information

generates term structures that look closer to a model that is dominated by business-cycle shocks.

We show that this is driven by the amplification (attenuation) of the price of business-cycle (trend)

risk under learning. When consumption is endogenous (as in our production economy with flexible

investment), learning yields term structure slopes that appear to be more impacted by trend shocks.

We show that this arises because observers attribute a larger share of the forecast error variance to

trend shocks under learning.

Appendix-B.1 Model Solution

The n-period bond log-price, Bn,t, is given by:

exp(Bn,t) = Et[Πn
j=1Mt+j−1,t+j ],

and the n-period dividend-strip price is given by:

exp(Dn,t) = Et[Πn
j=1Mt+j−1,t+jCFt+n].

While the log-prices Bn,t and Dn,t can only be solved for numerically under production, they can

be expressed in closed form in the endowment economy. This analytical solution allows us to more

precisely identify the different forces that drive the term structure under both full information and

under learning. 31

31Under production, CFt = Dt, given by equation (12). Under an endowment setup, Dt = Ct. Since the only wedge
between Dt and Ct under production is the labor cost, and given that labor is inelastic, this wedge does not materially
affect the cyclicality of dividends compared to endogenous consumption. Consequently, all results below are qualitatively
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Appendix-B.1.1 Real Yields Curve

We begin by analyzing the term structure of real yields. Conjecture that the n-period log-bond

price is given by:

Bn,t = −B0,n −Bx,nx̂t|t −Bz,nẑt|t. (B1)

We solve for the bond prices recursively utilizing the stochastic discount factor and the observation

that the n-period log-bond price satisfies

exp(Bn,t) = E [exp(mt+1 +Bn−1,t+1)] . (B2)

Applying log to both sides yields

Bn,t = Et [mt+1 +Bn−1,t+1] + 1
2Vart [mt+1 +Bn−1,t+1] , (B3)

given the properties of the log-normal distribution.

Going forward, we will distinguish between full information and learning using the superscripts FI

and L, respectively. Under full information, agents observe the underlying shocks perfectly and so

BFI
n−1,t+1 = −BFI

0,n−1 −BFI
x,n−1 (ρxxt + σxεx,t+1)−BFI

z,n−1 (ρzzt + σzεz,t+1) , (B4)

while the full-information SDF is given by

mFI
t+1 = m0 − ρx

ψ xt −
ρz−1
ψ zt − λxσxεx,t+1 − λzσzεz,t+1. (B5)

Substituting Equations (B4) and (B5) into Equation (B3) yields

BFIn,t = m0 −BFI0,n−1 −
(
ρx
ψ

+BFIx,n−1ρx
)
xt −

(
ρz−1
ψ

+Bz,n−1ρz
)
zt + 1

2

[(
λx +BFIx,n−1

)
σ2
x +

(
λz +BFIz,n−1

)
σ2
z

]
. (B6)

Under learning however, agents update their beliefs utilizing the forecast error, vt+1, so that

BL
n−1,t+1 = −BL

0,n−1 −BL
x,n−1

(
ρxx̂t|t + gxvt+1

)
−BL

z,n−1

(
ρz ẑt|t + gzvt+1

)
, (B7)

while the SDF in this case can be expresses as

mL
t+1 = m0 − ρx

ψ x̂t|t −
ρz−1
ψ ẑt|t − λvvt+1. (B8)

Substituting Equations (B7) and (B8) into Equation (B3) yields that

BLn,t = m0 −
(
ρx
ψ

+BLx,n−1ρx
)
x̂t|t −

(
ρz−1
ψ

+BLz,n−1ρz
)
ẑt|t + 1

2

(
λv +BLx,n−1gx +BLz,n−1gz

)
σ2
v. (B9)

Utilizing these expressions, we determine the coefficients recursively. First, note that BJ
0,0 = BJ

x,0 =

BJ
z,0 = 0, for J ∈ {FI, L}. Second, in both cases BFI

x,n = BL
x,n ≡ Bx,n, and BFI

z,n = BL
z,n ≡ Bz,n, where

identical when we set CFt = Ct in the production environment.
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Bx,n and Bz,n are given by

Bx,n = ρxBx,n−1 + ρx
ψ , (B10)

Bz,n = ρzBz,n−1 + ρz−1
ψ . (B11)

This implies that for all n ≥ 1

Bx,n =

n−1∑
j=0

ρjx

 ρx
ψ =

(
1−ρnx
1−ρx

)
ρx
ψ > 0 (B12)

Bz,n =

n−1∑
j=0

ρjz

 ρz−1
ψ =

(
1−ρnz
1−ρz

)
ρz−1
ψ < 0 (B13)

However, the unconditional log-bond price varies across the two settings with

BFI
0,n = BFI

0,n−1 −m0 − 1
2

[
(λx +Bx,n−1)2 σ2

x + (λz +Bz,n−1)2 σ2
z

]
, (B14)

BL
0,n = BL

0,n−1 −m0 − 1
2 (λv +Bx,n−1gx +Bz,n−1gz)

2 σ2
v . (B15)

Slope of the Yield Curve

The conditional n-period yield is

yJn,t = − 1
nB

J
n,t = 1

n

[
BJ

0,n +Bx,nx̂t|t +Bz,nẑt|t
]
, j ∈ {FI, L}, (B16)

which implies that the unconditional yield yJn , is given by

yJn ≡ E
[
yJn,t
]

= 1
nB

J
0,n. (B17)

For ease of expression, we will focus on y2 − y1 in our analysis of the determinants of the slope of the

real yield curve.32 We start by deriving the yields under full information:

yFI1 = −m0 − 1
2

[
λxσ

2
x + λzσ

2
z

]
, (B18)

yFI2 =
yFI1

2 −
m0
2 −

1
4

[
(λx +Bx,1)σ2

x + (λz +Bz,1)2 σ2
z

]
. (B19)

Substituting in for yFI0,1 and Bx,1, Bz,1 allows us to write the full-information slope as

slopeFI ≡ yFI2 − yFI1 = −1
4

[(
ρx
ψ

)2
σ2
x +

(
ρz−1
ψ

)2
σ2
z

]
− 1

2

[
λx

ρx
ψ σ

2
x + λz

ρz−1
ψ σ2

z

]
. (B20)

Similarly, the equivalent yields under learning are given by

yL1 = −m0 − 1
2λvσ

2
v , (B21)

yL2 =
yL1
2 −

m0
2 −

1
4 (λv +Bx,1gx +Bz,1gz)

2 σ2
v . (B22)

32We can show analytically that the economic channels we highlight arise in any yn − yn−1 and hence apply to any
slope, yn+k − yn.
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Substituting in for yL0,1 allows us to write the learning slope as

slopeL ≡ yL2 − yL1 = −1
4

[(
ρx
ψ

)2
g2
xσ

2
v +

(
ρz−1
ψ

)2
g2
zσ

2
v

]
− 1

2

[
λv

ρx
ψ gxσ

2
v + λv

ρz−1
ψ gzσ

2
z

]
. (B23)

Comparing slopeFI to slopeL yields several observations.

First, note that if one of the shocks is shut down, the slopes under full-information and learning

are identical. For instance, if σz = 0, then gx = 1, σ2
v = σ2

x, λx = λv and, therefore, slopeFI = slopeL.

Thus, it is straightforward to see that the slope is negative if there are only trend shocks (i.e., if σz = 0)

while the slope can be positive if there are only business-cycle shocks (i.e., if σx = 0)33.

Second, we obtain that

Sign(slopeL − slopeFI) ≈ Sign
(
ρx
[
λxσ

2
x − λvgxσ2

v

]
+ (1− ρz)

[
λvgzσ

2
v − λzσ2

z

])
(B24)

where the suppressed terms are quantitatively negligible.34 This expression yields the two aforemen-

tioned opposing forces which determine the effect of learning on the slope of the real yield curve.

The first force is related to the perceived quantity of risk of each shock. As we showed in Appendix-

A.2, under learning a larger share of the forecast error variance is associated with the trend shocks

(i.e., gx
gz
> σ2

x
σ2
z
), because the following inequalities always hold:

gxσ
2
v > σ2

x, and gzσ
2
v < σ2

z . (B25)

As shown in Equation (B24), this implies that all else equal (in particular, keeping the price of risks

for each shock equal), Sign(slopeL − slopeFI) < 0. Henceforth, we refer to this force as the share of

the forecast error channel.

The second force is related to the change in the magnitudes of risk prices. As can be seen in Figure

3a the price of risk for business-cycle (trend) shocks is attenuated (amplified). Intuitively, a portion

of the business-cycle shock is perceived as permanent (raising the price of risk of such shocks) while a

portion of the trend shock is perceived as transitory, lowering its price. Formally, it is straightforward

33In this case, a necessary condition for the upward sloping curve is that λz >
1−ρz
2ψ

, which is satisfied under our
calibration

34Note that since g2xσ
2
v < σ2

x and g2zσ
2
v < σ2

z , the term − 1
4

[(
ρx
ψ

)2
g2xσ

2
v +

(
ρz−1
ψ

)2
g2zσ

2
v

]
−

1
4

[(
ρx
ψ

)2
g2xσ

2
v +

(
ρz−1
ψ

)2
g2zσ

2
v

]
would be positive, suggesting that all else equal SlopeL > SlopeFI . However,

unlike the remainder of the slope differential found in (B24), this term is not scaled by the respective prices of risk. As
a result, we confirm that in our calibration this term has a negligible quantitative effect.
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to show that

λx > λv > λz. (B26)

All else equal (in particular, keeping the perceived quantities of risk constant), this implies that

Sign(slopeL − slopeFI) > 0. Below, we refer to this force as the relative price of risk channel.

In Appendix-B.2, we show that which of the two channels dominates depends not only on the

calibration, but also on the environment (i.e., the flexibility of investment).

Appendix-B.1.2 Dividend Strips Expected Returns Curve

We turn now to the term structure of dividend strips (equivalently, consumption strips in the

endowment setup, since CFt = Ct = Dt, in the absence of leverage of idiosyncratic shocks). Let

p̂n,t denote the log-price of an n-period dividend claim and pn,t ≡ p̂n,t − ct denote the log-price to

consumption ratio (to ensure stationarity). We conjecture that

pn,t = D0,n +Dx,nx̂t|t +Dz,nẑt|t. (B27)

Note that

exp (pn,t) = E [exp (mt+1 + ∆ct+1 + pn−1,t+1)] (B28)

and so by the properties of the log-normal distrbution,

pn,t = Et [mt+1 + ∆ct+1 + pn−1,t+1] + 1
2V art [mt+1 + ∆ct+1 + pn−1,t+1] . (B29)

Under full information, the stochastic discount factor is given by (B5) while

pFIn−1,t+1 = DFI
0,n−1 +DFI

x,n−1 (ρxxt + σxεx,t+1) +DFI
z,n−1 (ρzzt + σzεz,t+1) . (B30)

Substituting Equations (B30) and (B5) into Equation (B29) yields that

pFIn,t = m0 + µ+DFI
0,n−1 +

(
−ρx

ψ + ρx +DFI
x,n−1ρx

)
xt +

(
−ρz−1

ψ + ρz − 1 +DFI
z,n−1ρz

)
zt

+ 1
2

[(
1− λx +DFI

x,n−1

)2
σ2
x +

(
1− λz +DFI

z,n−1

)2
σ2
z

]
.

Under learning, the SDF is given by (B8) while

pLn−1,t+1 = DL
0,n−1 +DL

x,n−1

(
ρxx̂t|t + gxvt+1

)
+Dz,n−1

(
ρz ẑt|t + gzvt+1

)
. (B31)

Substituting Equations (B31) and (B8) into Equation (B29) yields that

pLn,t = m0 + µ+DL
0,n−1 +

(
−ρx

ψ + ρx +DL
x,n−1ρx

)
xt +

(
−ρz−1

ψ + ρz − 1 +DL
z,n−1ρz

)
zt

+ 1
2

(
1− λv +DL

x,n−1gx +DL
z,n−1gz

)2
σ2
v .
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This implies that DL
x,n = DFI

x,n ≡ Dx,n and DL
z,n = DFI

z,n ≡ Dz,n where

Dx,n = ρx

(
1− 1

ψ

)
+ ρxDx,n−1, (B32)

Dz,n = (ρz − 1)
(

1− 1
ψ

)
+ ρzDz,n−1, (B33)

for all n ≥ 1 since D0,0 = Dx,0 = Dz,0 = 0.

Suppressing superscripts for convenience, the log-return on the n−period ahead dividend (con-

sumption) strip, rn,t+1, can be written as

rn,t+1 = p̂n−1,t+1 − p̂n,t = pn−1,t+1 − pn,t + ∆ct+1 (B34)

which implies that its risk-premium is35

RPn,t ≡ Et [rn,t+1 − rf,t] ≈ −Covt (mt+1 − Et [mt+1] , rn,t+1 − Et [rn,t+1]) . (B35)

Under full information,

rFIn,t+1 − Et
[
rFIn,t+1

]
= (Dx,n−1 + 1)σxεx,t+1 + (Dz,n−1 + 1)σzεz,t+1 (B36)

which implies that unconditionally

RPFIn = λx (Dx,n−1 + 1)σ2
x + λz (Dz,n−1 + 1)σ2

z . (B37)

Under learning,

rLn,t+1 − Et
[
rLn,t+1

]
= Dx,n−1gxvt+1 +Dz,n−1gzvt+1 + vt+1 (B38)

which implies that unconditionally

RPLn = λv (Dx,n−1gx +Dz,n−1gz + 1)σ2
v (B39)

Slope of the Strips Curve

As with the real yield curve, we focus on RP2,t −RP1,t for parsimony. Under full information,

RPFI1 = λxσ
2
x + λzσ

2
z

RPFI2 = λx

(
ρx

(
1− 1

ψ

)
+ 1
)
σ2
x + λz

(
(ρz − 1)

(
1− 1

ψ

)
+ 1
)
σ2
z

and so the slope is given by

slopeFI ≡ RPFI2 −RPFI1 = λxρx

(
1− 1

ψ

)
σ2
x + λz (ρz − 1)

(
1− 1

ψ

)
σ2
z (B40)

Under learning,

RPL1 = λvσ
2
v (B41)

35It can be shown that the Jensen’s term, 1
2
Vart [rn,t+1], is quantitatively unimportant and so for parsimony we exclude

it from the qualitative discussion which follows.
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RPL2 = λv

(
1 + ρx

(
1− 1

ψ

)
gx + (ρz − 1)

(
1− 1

ψ

)
gz

)
σ2
v (B42)

and so the slope is given by

slopeL ≡ RPL2 −RPL1 = λv

(
ρx

(
1− 1

ψ

)
gx + (ρz − 1)

(
1− 1

ψ

)
gz

)
σ2
v

As with the real yield curve, if either shock is shut down, slopeL = slopeFI . This implies that

for the term structure of dividend strips, trend shocks tend to increase the slope while business cycle

shocks decrease it. Note that this implies that the impact of each shock is flipped relative to its impact

on the real yield curve.

We can see this more generally by signing the relative slope utilizing the following expression:

Sign
(
slopeL − slopeFI

)
= Sign

(
ρx
(
λvgxσ

2
v − λxσ2

x

)
+ (1− ρz)

(
λzσ

2
z − λvgzσ2

v

))
. (B43)

This expression is exactly the opposite of Equation (B24), which approximates the impact of learning

for the real yield curve. Thus, in this case, the share of the forecast error channel suggests that

slopeL > slopeFI , since agents assign a larger fraction of the forecast error variance to the trend shock,

making the slope more positive (or less negative). In contrast, the relative price of risk channel

suggests that slopeL < slopeFI since the price of risk is larger (smaller) for the business-cycle (trend)

shock.

Appendix-B.2 Quantitative Results

It is clear from the preceding analysis that the effect of learning on the slope of the term structure

is a priori ambiguous and, importantly, depends upon the relative strength of two distinct economic

channels. To resolve this ambiguity, we numerically solve for the term structure of real yields and

equity risk premia under the endowment and the production economies. To so so, we utilize the

parameters of the production economy which were estimated using SMM and reported in Table 1.

For the endowment economy, the parameters governing the household preferences are the same as in

Table 1. To ensure that the only difference between the two economies is the production environment

(i.e., flexible investment), the parameters that govern the evolution of exogenous consumption, Ct,

in the endowment setup are identical to those that govern the evolution of productivity, At, in the

production setup.36

36This is the first calibration utilized in Appendix A. The results are qualitatively similar if we utilize the second.
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Panel A of Table Appendix-B.1 shows model-implied slopes for the real yield curve, where

slope(ny − 2y) = E[yn,t]− E[y2,t],

and yn,t (y2,t) is the n- (2-) year real yield. We focus on annual frequency yields and on the two-year

yield for the short end to facilitate a comparison with the empirical counterparts for the US and the

UK. Panel B of Table Appendix-B.1 shows model simulated slopes for the term structure of dividend

strip expected returns, where

slope(ny − 1y) = E[Rn,t+1]− E[R1,t+1],

and Rn,t+1 (R1,t+1) is the n- (1-) year dividend strip return. Due to the availability of the corresponding

data, we focus on the one-year dividend strip for the short end.

This analysis generates three main observations. First, under full-information, the model’s yield

(equity) term structure is downward (upward) sloping in a population sample, as implied by both

the endowment or the production model. Recall that under full-information, trend (business-cycle)

shocks induce a downward (upward) sloping real yield term structure, and an upward (downward)

sloping equity term structure. Thus, while trend shocks are smaller than business-cycle shocks, the

implications of the former for term structures dominates the effect of the latter. This result mirrors

the dominance of trend shocks for the equity premium under full-information. We note, however, that

the production-economy equity term structure slopes of horizons longer than two years are statistically

indistinguishable from zero, which indicates that in short samples empirical estimates may suggest a

larger role for business-cycle shocks.

Second, in the endowment economy, both term structures become flatter under learning (relative to

the full-information benchmark). The learning-implied yield (equity) term structure is less downward

(upward) sloping. This result suggests a larger role for the relative price of risk channel in our

calibration; that is, the amplification (attenuation) of business-cycle (trend) risk-prices under learning

leads to a flatter term structure.

Third, in our production setting, learning pushes the slopes in the opposite direction than what

we observe in the endowment economy. Specifically, the learning-implied yield (equity) term structure

is more downward (upward) sloping. This is particularly pronounced for the dividend strip term

structure. While the five year slope is 2.2% under full-information, it is about 11% under learning.
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These results indicate that, under production, the amplification of the trend shock’s perceived share

of the forecast error variance becomes the dominant channel. Consequently, term structures behave

as if the data generating process exhibits more sizable permanent shocks than they actually do. This

outcome is consistent with trendy business cycle shocks driving a large fraction of the equity premium

as we discussed in Section 6.

Importantly, the qualitative change in learning’s impact on the slope of the term structures em-

phasizes the importance of production for studying the pricing implications of imperfect information.

By assuming that consumption is exogenous, one may spuriously conclude that learning flattens term

structure slopes (or equivalently, enhances the contribution of the business cycle component). Yet,

in the data, consumption is truly endogenous, and as we show in Table Appendix-B.1, the effect of

learning is reversed in this setting (or equivalently, learning ends up enhancing the contribution of

trend shocks) relative to an endowment economy.

This reversal in the impact on the slope bears an intuitive explanation. Untabulated quantitative

results confirm that the impact of learning on the term structure of output strips (i.e., CFt = Yt) is

similar to the impact of learning on equity strips in the endowment economy. That is, all else equal, the

term structure of output strips is less upward-sloping under learning. A similar result applies to the

term structure of investment strips, which becomes less upward-sloping as well. The key observation

is that investment is more volatile than output, so the effect of learning on investment strips is more

pronounced than output strips. Because consumption is output minus investment in the production

economy, this implies that the effect of learning on the term structure of consumption strips should

be the opposite: learning turns the term structure of consumption strips’ expected returns to be

more upward sloping. Put differently, the endogeneity of consumption in the model implies that the

dominant channel in determining the impact of imperfect information on the term structure is the

fact that a larger fraction of the forecast error variance is attributable to trend shocks under learning.

Because dividends are almost identical to consumption (net of wages), the impact of learning on

dividend strips is similar to that on consumption strips. In both cases, the slope turns more positive.

Whether learning helps to quantitatively reconcile the empirical term structures depends both

on the the endogeneity of consumption as well as on one’s prior on the data, given the relatively
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short samples available. For the US, data on real yields encompass a short period starting with the

introduction of TIPs in 1997. Panel A of Table Appendix-B.1 shows that within this sample, the

five-year yield slope is positive. However, for the UK, data on inflation-indexed bonds is available for

a longer sample, starting in 1983. Evans (1998) and Verdelhan (2010) use a Nelson and Siegel (1987)

model along with Bank of England zero-coupon real yields to obtain yields for fixed annual maturities.

The five year real-yield slope is -0.91%. Under production, the five year yield slope turns from -0.47%

under full information to -0.62% under learning. This is closer to the data, so long as one maintains a

belief that the UK sample better reflects the population dynamics of real yields. Notably, our model

is estimated using data from the 1960s onward, which is closer to the timeline of the UK sample than

the US sample.

The empirical evidence about the equity term structure is also somewhat inconclusive. Papers by

Van Binsbergen, Hueskes, Koijen, and Vrugt (2013) and Van Binsbergen and Koijen (2017) argue that

the term structure of equity risk premia is downward sloping. More recent evidence by Bansal et al.

(2021) suggests otherwise. Updated data shows that the term structure of dividend strip expected

returns is downward sloping only in recessions. Unconditionally, the term structure has a positive

slope, as shown in Panel B of Table Appendix-B.1. The five year slope using Bansal et al. (2021)

data amounts to 7%. Under production, the five equity term structure slope is 11% (2.2%) under

learning (full-information). Slopes are amplified at other maturities as well, which helps to reconcile

the model-implied curve with the unconditional empirical curve.
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Table Appendix-B.1: Term Structures: full information versus learning

Panel A: Real yields term structure

Endowment Economy
Full Information Learning

slope(3y-2y) -0.28 [-0.36,-0.28] -0.13 [-0.14,-0.11]
slope(4y-2y) -0.57 [-0.71,-0.55] -0.30 [-0.31,-0.28]
slope(5y-2y) -0.86 [-1.04,-0.81] -0.51 [-0.51,-0.49]

Production Economy
Full Information Learning UK Data US Data

slope(3y-2y) -0.16 [-0.18,-0.12] -0.20 [-0.27,-0.16] -0.37 0.17
slope(4y-2y) -0.31 [-0.37,-0.25] -0.41 [-0.52,-0.33] -0.75 0.32
slope(5y-2y) -0.47 [-0.56,-0.38] -0.62 [-0.76,-0.51] -0.91 0.44

Panel B: Dividend strips term structure

Endowment Economy
Full Information Learning

slope(2y-1y) 0.29 [0.27,0.33] 0.11 [0.10,0.12]
slope(3y-1y) 0.60 [0.53,0.66] 0.29 [0.26,0.34]
slope(4y-1y) 0.89 [0.79,1.00] 0.52 [0.47,0.61]
slope(5y-1y) 1.19 [1.04,1.35] 0.78 [0.78,0.91]

Production Economy
Full Information Learning UK Data US Data

slope(2y-1y) 1.06 [0.04,3.02] 4.57 [2.93,8.34] - 3.85
slope(3y-1y) 1.69 [-0.33,5.16] 7.63 [4.67,14.30] - 5.54
slope(4y-1y) 2.04 [-0.85,6.90] 9.69 [5.67,18.63] - 6.43
slope(5y-1y) 2.21 [-1.33,8.14] 11.09 [6.18,21.81] - 7.03

The table shows model-implied moments from an endowment economy, in which the business-cycle and trend parameters
of consumption are identical to those of aggregate productivity in the production model, and from a production economy
that is identical to the one described in Section 3, in which the parameters are described in Table 1. Panel A shows the
slopes of the real yield curve, where slope(ny-2y) = E[yn,t] − E[y2,t]. Panel B shows the slopes of the real yield curve,
where slope(ny-1y) = E[Rn,t+1] − E[R1,t+1], with Rn,t+1 = Pn−1,t+1/Pn,t. The model-implied moments are computed
under learning and under full-information. UK inflation-indexed yields cover the period 1983 to 2006, where the 1983-
1995 yields are obtained from Evans (1998), and the 1995-2006 yields are from Verdelhan (2010). US inflation-indexed
(TIPS) yields are from 1997-2006. US dividend strip returns are from Bansal et al. (2021), covering the period 2005-2017.
All yields and returns are in annual terms expressed in percents.

75


	Introduction
	Related Literature
	Model
	Production
	Technology
	Information and Learning
	Firm
	Household
	Equilibrium
	Estimation

	Learning Implications for Beliefs
	Implications for Perceived Growth
	Implications for Uncertainty
	Implications for Perceived Long-run Productivity Risk


	Learning Implications for Macro Dynamics
	Macroeconomic Dynamics under Risk-Neutrality
	Macroeconomic Dynamics under Risk-Aversion

	Learning Implications for Asset Prices
	Imperfect-Information and Asset-Pricing Moments
	Inspecting the Mechanism
	Full-Information
	Imperfect-Information

	Consumption Risks: The Role of Learning and Production
	Economic Origin of Long-Run Risk
	The Magnitude of Risk Premia
	Term Structure of Risk

	Cyclicality under Imperfect-Information: Model vs Data
	Robustness


	Learning Implications for Empirical Paths
	Conclusion
	Endowment Economy
	Model Setup and Solution
	Risk Premium and Information: Qualitative Analysis
	Comparing Full to Imperfect Information: Quantitative Analysis

	Term Structure
	Model Solution
	Real Yields Curve
	Dividend Strips Expected Returns Curve

	Quantitative Results


